Auf der Jagd nach der Dunklen Energie: eROSITA, Simbol-X und XEUS

GLAST

Günther Hasinger

Max-Planck-Institut für extraterrestrische Physik, Garching

Bayerisches Wirtschaftsministerium, München 12. Juni 2008

Gamma-ray Large Area Space Telescope

GBM

Start: 11. Juni 2008 Soweit erfolgreich!

death_cry2

Die dunkle Seite des Universums

Schwarze Löcher 0.001%

Schwere Elemente 0.03%

Neutrinos 0.2-1.9%

Freier Wasserstoff und Helium 3.8±0.4%

Dunkle Materie 19±4%

Dunkle Energie 76±4%

NASA Beyond Einstein & WMAP3

Kosmische Ausdehnung

Dark Energy Accelerated Expansion

Fluktuationen des Mikrowellen-Hintergrundes

Wasser

Heißer Urknall

Animation: NASA

• Der Raum ist "flach": $\Omega_{tot} = 1.02 \pm 0.02$ 70% Dunkle Energie

Vergleich verschiedener Beobachtungen

Die Expansion des Universums

Verschiedene Verläufe der kosmischen Expansion für verschiedene Werte für die Energiedichte der Materie (Ω_m bezeichnet die Summe aus Dunkler Materie und normaler Materie) und der Dunklen Energie Ω_Λ (NASA)

Entstehung der kosmischen Struktur

z=49.000

Simulation der Dunklen Materie

2MASS Survey vs Simulationen

IPAC/Caltech & University Massachusetts

Galaxien sind am Himmel wirklich in einer Schaum-artigen Struktur angeordnet: dem "Cosmic Web"

Galaxienhaufen

... bilden sich an den 3D Kreuzungen der Filamente des kosmischen Netzes

Dunkle Materie

Strahlende Materie

Hydro-Simulations V. Springel et al., 2003, MPA

Galaxienhaufen als Röntgenquellen

Potentialwannen der Dunklen Materie sind mit heißem Gas gefüllt

Merger von zwei Haufen in dem System Abell 3528 beobachtet mit ROSATh ROSAT: Röntgenemission in Falschfarben, optische Galaxien in Schwarz (Schindler 2002)

ROSAT

XMM-Newton

Cosmos Survey 2 deg²

Der eROSITA Survey (>2011 auf dem russischen SRG Satelliten)

Haupt-Ziel: Studium der Dunklen Materie und der Dunklen Energie mit Hilfe der Beobachtung von 100000 Galaxienhaufen am ganzen Himmel.

Dabei werden auch etwa 3.5 Millionen Schwarze Löcher entdeckt.

erosita @ Spektr-RG

SXC Calorimeter —

POCKOCMOC

Navigator Platform

CCD-Module

Four × 3cm 3cm CCDs still on Si-Wafer. The CCDs have 384 × 384 pixels in both image and framestore area. Pixelsize: 75µm. Cycle time: 50msec

Measurements at C K α (277eV) and Mn K α (5,9 keV) on flight- CCDs (2cm ×2cm) show the expected energy resolution and low energy response.

Similar detectors also for FLASH and XFEL !

MPE+MPP Semiconductor Laboratory

1200 m² Cleanroom up to class 1 ...

... with modern facilities

... for a complete 6" silicon waver production

test and qualification

Computer network for simulation, layout and analysis

mounting and bonding

eROSITA

- 7 Mirror Systems

- \varnothing 35 cm (ABRIXAS 16 cm)
- 54 gold-coated nickel-shells
- PSF < 20 arcsec (goal 15 arcsec)
- A_{eff} ~ 2400 cm² (1 keV, on-axis)
- Grasp ~700 cm² deg² at 1 keV

eROSITA

- 7 individual cameras

- 256 × 256 pixel, 75µm
- 41 × 41 arcmin² FoV
- framestore area

XMM-Newton PN+MOS Thin

eROSITA 7 Tel Rosat PSPC

XMM

ROSAT

4 Jahre Himmelsdurchmusterung ergeben 100.000 Galaxienhaufen (Dunkle Energie!) 3.5 Mio Aktive Schwarze Löcher Viel andere interessante Wissenschaft!

Energy [keV]

XMM COSMOS Survey

•0'5

1000

100

eROSITA

Leistungsspektrum / Baryon-Oszillationen

Massen-Function der Haufen f(z)

Aber sehr genaue Röntgenbeobachtungen für die Masse!

Eigenschaften der Dunklen Energie

Baryonische OSzillationen

100000 Galaxienhaufen

Springel et al., 2006

Haiman et al., 2005

Nachfolgebeobachtungen

- Optische Identifikationen/Entfernungen vom Boden (PanSTARRS, LSST,...)
- Detaillierte Beobachtungen im Röntgenlicht (Simbol-X, XEUS)
- Synergie mit anderen Dark-Energy Satellitenmissionen (insbesondere Euclid)

Siehe Vortrag von Hans Böhringer

XEUS - Physics of the hot evolving Universe

Cesa____

Cosmic Vision

BR-24

European Space Agenc Agence spatiale européenn Kandidat für die L1-Mission der ESA (>2018) Fokallänge 35 Meter!

eec

XEUS Technologie-Entwicklung Deutschland: Spiegel (KT) und Detektoren (MPE/HLL)

Simbol-X

Prototyp-Mission für den Formationsflug (XEUS) Fokallänge 20m, Start 2014

Mirror: XMM-type

Detector: DEPFET/CdZnTe sandwich prototype Kollaboration zwischen Frankreich (Detektor-Satellit, HE Fokalebene), Italien (Spiegel-Satellit, Spiegel) & Deutschland (LE Fokaldetektor, Spiegeltests & Kalibration)

Vielen Dank für Ihre Aufmerksamkeit