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Zusammenfassung

Eine der wichtigsten Fragestellungen in der heutigen Kosmologie ist die, ob die ursprüng-
lichen Dichtefluktuationen im frühen Universum tatsächlich einerseits Gauss’schen und an-
dererseits statistisch isotropen Charakter aufweisen. Diese Fluktuationen werden widerge-
spiegelt in der kosmischen Hintergrundstrahlung (cosmic microwave background, CMB),
welche nach der aktuell anerkanntesten inflationären Theorie, bei der von nur einem skalaren
Feld mit einem flachen Potential ausgegangen wird, beide Eigenschaften aufweisen müsste.
Jedoch gibt es eine Vielzahl von komplexeren Modellen, welche Anisotropien und nicht-
Gaussianitäten zulassen würden. Falls diese Eigenschaften entdeckt oder widerlegt werden
könnten, wäre man somit in der Lage, sich eindeutig zwischen verschiedenen Theorien
zu entscheiden, was unser Verständnis über die Anfangszeit unseres Universums erheblich
verbessern würde.

In dieser Doktorarbeit werden mehrere ausführliche Untersuchungen der Isotropie und
Gaussianität der Hintergrundstrahlung durchgeführt, welche auf den fünf- und sieben-
jährigen Beobachtungen des WMAP Satelliten beruhen. Zum einen werden diese Unter-
suchungen mittels eines Vergleichs zwischen gemessenen und simulierten Datensätzen be-
werkstelligt, was die übliche Herangehensweise bei dieser Art von Analysen darstellt. Zum
anderen wird in der vorliegenden Arbeit eine neue Methode vorgestellt, welche auf einem
modellunabhängigen Ansatz beruht. Ausgehend von der Hypothese, dass die Fourier-
Phasen der betrachteten Hintergrundstrahlung im Falle eines Gauss’schen Zufallsfeldes
unabhängig und zufällig verteilt sein müssen, werden die Phasen der ursprünglichen Karte
in einem gewünschten Skalenbereich zufällig vertauscht, und dadurch so genannte Surrogat-
Karten erzeugt. Falls nun Unterschiede zwischen diesen Surrogaten und den gemessenen
CMB Karten festgestellt werden können, so deuten diese auf eine Verletzung der Annah-
men der aktuell gültigen Inflationstheorie hin. Voraussetzung dafür ist natürlich, dass
sowohl systematische als auch Einflüsse von Vordergrundstrahlungen als Ursache für die
Unterschiede ausgeschlossen werden können.

Die Erzeugung von Surrogat-Daten mittels Fourier-basierten Methoden benötigt für
eine fehlerfreie Anwendung ein orthonormales Basissystem. Diese Voraussetzung wird von
den Kugelflächenfunktionen nur für die vollständige Sphäre erfüllt. Aus diesem Grund wird
in dieser Arbeit zum ersten Mal die oben genannte Methode mit einer weiteren Technik
kombiniert, die einen Übergang von den ursprünglichen Kugelflächenfunktionen zu einem
orthonormalen Basissystem für eine beliebige unvollständige Kugeloberfläche ermöglicht.
Die ursprüngliche Surrogat-Methode, wie auch die Kombination dieser Methode mit der
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Basistransformation in eine unvollständige Sphäre, werden gründlich auf systematische
Einflüsse überprüft. Somit stellt diese Doktorarbeit nicht nur eine ausführliche Unter-
suchung der Hintergrundstrahlung dar, sondern präsentiert auch eine grundlegend neue
Methode für die Analyse von vollständigen oder nur teilweise vorhandenen Daten auf
einer Kugeloberfläche hinsichtlich Korrelationen höherer Ordnung, welche in beliebigen
Forschungsbereichen angewandt werden kann.

Die Anwendungen der oben genannten Methoden umfassen in dieser Doktorarbeit im
Einzelnen folgende Analysen: Zuerst werden verschiedene Frequenzbänder der fünf-Jahres
WMAP Daten mit Hilfe von Skalierungsindizes einer detaillierten Studie unterzogen. In
diesem Kontext werden die Ergebnisse mit simulierten Datensätzen verglichen. Auf lokale
Besonderheiten, sowie Möglichkeiten um Randeffekte aufgrund von Maskenausschnitten
auszugleichen, wird im Detail eingegangen. Im Anschluss wird erstmals die Methode der
Surrogate angewandt. Dabei werden verschiedene vordergrundreduzierte Datensätze aus
den fünf- und sieben-Jahres Beobachtungen des WMAP Satelliten verwendet, welche alle
auf der vollständige Sphäre vorliegen. Die Untersuchung umfasst verschiedene Skalen-
bereiche sowie ausführliche Tests auf systematische Einflüsse.

Anschließend wird noch einen Schritt weiter gegangen, und die Untersuchung mit Surro-
gaten erstmalig für unvollständige Kugeloberflächen durchgeführt. Dabei werden wiederum
die fünf- wie auch die sieben-Jahres Daten von WMAP betrachtet. Es werden unter-
schiedlich große Bereiche der galaktischen Ebene ausgeschnitten, welche die Hauptursache
für Verunreinigungen darstellt. Außerdem werden verschiedene Techniken für die Basis-
transformation angewendet und verglichen.

Bei allen oben genannten Untersuchungen wurden erhebliche nicht-Gaussianitäten sowie
Abweichungen von statistischer Isotropie festgestellt. Tatsächlich zeigen die mit Hilfe von
Surrogaten durchgeführten Analysen die bis heute mit Abstand signifikanteste Detektion
von nicht-Gaussianität. Die bandabhängigen Untersuchungen weisen übereinstimmende
Resultate für alle Frequenzbänder auf. Trotz ausführlicher Suche konnten weder systema-
tische Effekte noch Verunreinigungen durch Vordergrundstrahlungen als Ursache für diese
Auffälligkeiten ausgemacht werden. Aus diesem Grund müssen die Ergebnisse als kosmo-
logisch angesehen werden, was eine beachtliche Verletzung einerseits der Annahmen über
eine Inflation mit einem skalaren Feld und flachem Potential, wie auch andererseits der
grundlegenden Auffassung von statistischer Isotropie zur Folge hätte.

Zukünftige Analysen der noch präziseren Messungen des CMB durch den PLANCK-
Satelliten werden mit hoher Wahrscheinlichkeit Aufschluss über die Ursachen der detek-
tierten Anomalien geben.



Summary

One of the key challenges in Cosmology today is to probe both statistical isotropy and
Gaussianity of the primordial density perturbations, which are imprinted in the cosmic
microwave background (CMB) radiation. While single-field slow-roll inflation predicts the
CMB to fulfil these two characteristics, more complex models may give rise to anisotropy
and/or non-Gaussianity. A detection or non-detection allows therefore to discriminate
between different models of inflation and significantly improves the understanding of basic
conditions of the very early Universe.

In this work, a detailed CMB non-Gaussianity and isotropy analysis of the five- and
seven-year observations of the WMAP satellite is presented. On the one hand, these
investigations are performed by comparing the data set with simulations, which is the usual
approach for this kind of analyses. On the other hand, a new model-independent approach
is developed and applied in this work. Starting from the random phase hypothesis, so-
called surrogate maps are created by shuffling the Fourier phases of the original maps
for a chosen scale interval. Any disagreement between the data and these surrogates
points towards phase correlations in the original map, and therefore – if systematics and
foregrounds can be ruled out – towards a violation of single-field slow roll inflation.

The construction of surrogate maps only works for an orthonormal set of Fourier func-
tions on the sphere, which is provided by the spherical harmonics exclusively on a complete
sky. For this reason, the surrogate approach is for the first time combined with a transfor-
mation of the full sky spherical harmonics to a cut sky version. Both the single surrogate
approach as well as the combination with the cut sky transformation are tested thoroughly
to assess and then rule out the effects of systematics. Thus, this work not only represents
a detailed CMB analysis, but also provides a completely new method to test for scale-
dependent higher order correlations in complete or partial spherical data sets, which can
be applied in different fields of research.

In detail, the applications of the above methods involve the following analyses: First,
a detailed study of several frequency bands of the WMAP five-year data release is accom-
plished by means of a scaling index analysis, whereby the data are compared to simulations.
Special attention is paid to anomalous local features, and ways to overcome the problem
of boundary effects when excluding foreground-influenced parts of the sky. After this,
the surrogate approach is for the first time applied to real CMB data sets. In doing so,
several foreground-reduced full sky maps from both the five- and seven-year WMAP ob-
servations are used. The analysis includes different scale intervals and a huge amount of
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checks on possible systematics. Then, another step forward is taken by applying the sur-
rogate approach for the first time to incomplete data sets, again from the WMAP five-
and seven-year releases. The Galactic Plane, which is responsible for the largest amount of
foreground contribution, is removed by means of several cuts of different sizes. In addition,
different techniques for the basis transformation are used.

In all of these investigations, remarkable non-Gaussianities and deviations from statisti-
cal isotropy are identified. In fact, the surrogate approach shows by far the most significant
detection of non-Gaussianity to date. The band-wise analysis shows consistent results for
all frequency bands. Despite a thorough search, no candidate for foreground or system-
atic influences could be found. Therefore, the findings of these analyses have so far to be
taken as cosmological, and point on the one hand towards a strong violation of single-field
slow-roll inflation, and question on the other hand the concept of statistical isotropy in
general.

Future analyses of the more precise measurements of the forthcoming PLANCK satellite
will yield more information about the origin of the detected anomalies.



Introduction: A short sketch of the
Standard Model of Cosmology

The recent years are often referred to as the “Golden Age of Cosmology”: Many new
experiments, carried out with telescopes on the ground, with balloon missions in the sky, or
with satellites and probes in space, lead to a wide range of new results at an unprecedented
accuracy. It was possible to establish what is referred to as the “Standard Model of
Cosmology” (see e.g. [1, 2, 3]): The birth of the Universe occurring by means of a hot Big

Bang, followed by an extremely short time period called inflation, in which the Universe
grows by an unbelievable factor between 1030 and 1050 during less than 10−30 seconds. A few
minutes after inflation, primordial nucleosynthesis takes place, where the combination of
protons and neutrons creates the first nuclei, that again unite with electrons to form atoms
around 400 000 years later in the process of recombination. From this time on, radiation
can travel nearly freely through space due to much less free electrons that could scatter
it, and therefore it forms what we call today the cosmic microwave background (CMB).
The Big Bang Cosmology hypothesises a flat, homogeneous and isotropic universe, which
is represented in the Friedmann-Lemâıtre-Robertson-Walker metric. The development of
structure formation is described by the ΛCDM-Model. It assumes the Universe to be filled
with cold dark matter, and makes use of the cosmological constant Λ. This constant is
often referred to as some kind of “vacuum energy”, and is responsible for the accelerated
expansion of our Universe today.

This combination of theories offers indeed an elegant explanation to a multiplicity
of observations. For example, the observed linear correlation between the redshift and
distance of supernovae is a strong indication of an expanding universe [4, 5, 6, 7]. This
relation is today represented by means of the Hubble-Parameter H(t). Furthermore, the
measured abundance of light elements, that is 1

H, 2
H, 3

He, 4
He and 7

Li, in the Universe
can be successfully explained by nucleosynthesis [8, 9, 10, 11, 12]. But one of the strongest
arguments for the Standard Model is the measurement of the CMB radiation. Not only
the detection itself, but also the fact that its spectrum describes a nearly perfect black
body supports the whole concept of modern Cosmology (e.g. [13]).

Despite this good agreement to many observations, some parts of the Standard Model
are not yet confirmed by detections. Two well-known examples are the question of the
existence of Dark Matter as well as Dark Energy, and – after a positive answer – its
nature and origin. This open issue leaves some space for alternative ideas (e.g. modified
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gravity [14, 15] instead of these two quantities, or the local void model [16, 17, 18] as
an alternative to Dark Energy). Moreover, some results of cosmological analyses seem to
disagree to some of the above mentioned theories. For instance, a couple of investigations
question the Gaussianity of the CMB and with it the present model of inflation. This
challenge is in fact one of the most interesting issues of today’s Cosmology. In general,
one is bound to say that the Standard Model still offers various open questions. However,
the strongly increasing amount of new experiments and analyses as well as the number
of people involved shows that we reached a period of high-precision Cosmology like never
before. Therefore, we might be able to solve the majority of these open questions in the
near future.

This thesis carries out two main tasks: On the one hand, this work accomplishes a
detailed search for anisotropies and non-Gaussianities in the CMB. On the other hand, a
completely new model-independent approach of data analysis is developed, which allows
to test for scale-dependent higher order correlations in complete as well as partial spherical
data sets. This method is – for the first time – applied to CMB data, although it can also
be used beyond the scope of Cosmology.

The outline of this work is as following: In Chapter 1, we will give a short review
about the theoretical background of CMB investigations, including the important role of
inflation, the basic characteristics of the microwave background itself, and an overview of
the current status of CMB observations. The methods and statistics, that form the basis
of the CMB analysis in this thesis, will be outlined in detail in Chapter 2. In particular,
the attention will be drawn towards the scaling index statistics, the fundamentals of the
method of surrogates as well as the construction of an orthonormal basis for a cut sky
analysis. Chapter 3 will inform about the measurements and observational difficulties of
the WMAP satellite, whose data will be used throughout the whole work. In the following
Chapter 4, an analysis by means of the scaling index method examing the WMAP five-year
data will be performed. The implementation of the surrogate approach, in combination
with the scaling index method, will be accomplished in Chapters 5 and 6. The analyses
include different scale intervals and a large amount of checks on possible systematics. The
results will be given for the WMAP five- as well as seven-year data. In Chapter 7, the
surrogate approach is for the first time applied to incomplete WMAP data sets. In doing so,
the Galactic Plane, which is responsible for the largest amount of foreground contribution,
is removed by means of several sky cuts of different sizes. In addition, different techniques
for the construction of an orthonormal basis on these partial data sets are used. Finally,
we conclude in Chapter 8.



Chapter 1

Theoretical Background of the CMB

1.1 The Role of Inflation

1.1.1 Inflation as an improvement of the Standard Model

Inflation was introduced to remove some of the weaknesses that Big Bang theory did suffer
from, whereupon the most important one is the horizon problem. In the following, we will
give a short overview on every problem and the way inflation solves it (cf. [19, 20, 21, 22]).

The horizon problem

The distance that light can cover since the Big Bang (t = 0) up to today (t = t0) is
expressed by the comoving horizon

τ =

�
t0

0

a(t)−1
dt ,

which also sets the constraints for causal contact between particles. Here, a(t) describes
the scale factor. In combination with the Hubble-Parameter H(t), this formula can as well
be expressed by means of the comoving Hubble radius (a(t)H(t))−1:

τ =

�
a0

0

da

H(t)a2(t)
=

�
a0

0

d ln a(a(t)H(t))−1

Without inflation, the comoving Hubble radius increases monotonically ([21, 22]), hence
leading to a growing τ . In this case, CMB radiation, which travels through space nearly
since the Big Bang, could not be in causal contact if arriving at the earth from two opposite
directions. In contrary to that, the measurements of the microwave background show that
it is very close to perfect isotropy (e.g. [29], see also the following Chapter). These
measurements are very difficult to explain if there was no causal contact that could bring
the radiation into equilibrium. This challenge is known as the horizon problem.

Inflation offers a solution to that problem, since it describes a short period, in which
the comoving Hubble radius drastically shrinks with time. In other words, the Hubble
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scale remains constant while the Universe grows dramatically. The observable Universe,
being consistent with the comoving horizon, is suddenly completely contained in a blown
up region that has been very small before inflation occurred. In this small region, causal
contact was of course taking place, which offers an elegant explanation for the isotropy of
the CMB.

The flatness problem

The Friedmann equations rank among the most important equations of Cosmology since
they describe the fundamental issue of expansion (or contraction) of the Universe. The
first of the two equations, �

ȧ

a

�2

=
8πG

3
ρ− k

a2
+

Λ

3
,

where G, ρ, k, a and Λ refer to the gravitational constant, the energy density, the curvature
parameter, the scale factor and the Cosmological Constant, can also be written including
the density parameters

Ω =
ρ

ρc

, ΩΛ =
Λ

3H2
,

at which

ρc =
3H2

8πG

describes the critical density. Note that both density parameters are time dependent,
though this notation is left out for this Chapter due to simplicity reasons. After some
simple algebraic transformations, we obtain [22]

|Ω + ΩΛ − 1| =
����

k

(aH)2

���� . (1.1)

This equation accurately identifies the departure of the Universe from flatness, Ω+ΩΛ = 1,
and shows that only the term on the right side is responsible for any deviation. Taking a
closer look reveals that, once again, the comoving Hubble radius appears in this equation.
As stated above, without inflation the expression (aH)−1 would monotonically grow with
time, and therefore also any departure |Ω + ΩΛ − 1|. It turns out that the setting Ω +
ΩΛ = 1 marks an unstable fixed point [22], meaning that any non-flatness of the Universe
increases. Turning this argument upside down, we obtain the fact that any deviation from
flatness today must have been even smaller in the past. The constraints are extremely
tight, e.g. for the time of nucleosynthesis we obtain an upper limit of 10−16 [22]. This
strict limitation of selectable curvature settings is called the flatness problem.

With the implementation of inflation, the comoving Hubble radius (aH)−1 decreases
during this time period and the above constraints do not hold anymore. In fact, the
Universe is significantly moved towards flatness, and the value Ω + ΩΛ = 1 now describes
an attractor [22]. A multiplicity of curvature values is appropriate again, thereby solving
the flatness problem.
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The abundances of magnetic monopoles

Models of the Grand Unified Theory (GUT) predict the creation of nonrelativistic magnetic
monopoles in great number, caused by spontaneous symmetry breaking at an energy scale
of about 1016 GeV [19, 20]. Up to today, these (hypothetical) particles could not be
detected [30, 31, 32], putting a challenge to the Big Bang model.

Again, this problem can be easily solved by introducing inflation. The rapid expansion
of the Universe lowers the frequency density of the magnetic multipoles significantly, and
brings theory and observation together.

Structure formation

In addition to a solution for the problems from above, inflation offers an elegant explanation
for the formation of the large scale structure in the Universe today [21, 22]. During the early
Universe, microscopic density perturbations appear, generated by quantum fluctuations of
the inflaton field, which is the scalar field responsible for the inflationary expansion, as
we will see in the next section. Since the Universe grows dramatically during the time
of inflation, the size of these density perturbations increases to large scales. Through
gravitational instability, more and more mass accumulates in the regions of higher density.
This leads at first to single stars and in the end to a distribution of galaxy clusters, and
therefore to a structure formation just as we observe it today. The density perturbations
are reflected in the CMB (see also Chapter 1.2.2), which is therefore often referred to as
the seed of the large scale structures.

In the standard single-field slow-roll inflation, the primordial perturbations are assumed
to be Gaussian and scale-invariant, which implies a nearly scale free power spectrum P (k)
(see also below) that completely describes these pertubations. However, this implies that
no higher-order correlations exist and the phases of the Fourier coefficients are random.
In fact, the latter assumption will be the main interest of this work, and will be discussed
below in more detail.

1.1.2 Basic Concept of Inflation

Inflation describes an extremely short time period taking place at around 10−34 seconds
after the Big Bang, in which the Universe is thought to expand by a factor between 1030

and 1050 at an energy scale of around 1015 GeV (for reviews see e.g. [19, 20, 21, 22]). It
is part of the theories characterising the very early Universe, and has still to be taken as
speculative. But, as shown above, it matches perfectly to a lot of observations and removes
some of the major weaknesses of Big Bang theory.

The inflation scenario was first proposed in [23] and pursued in [24] and [25] to today’s
standard concept, which is often denoted as single-field slow-roll inflation. However, there
exists a large number of different inflation theories nowadays, often including multiple
fields: inflation based on supersymmetry, superstring and supergravity models, F-Term or
D-Term inflation, brane model inflation, curvaton scenarios, warm inflation, DBI inflation,
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Figure 1.1: The potential V (φ) of the inflaton field φ. Inflation takes place in the flat part
of the potential. At φCMB, the CMB fluctuations are created, while at φend, inflation ends
when the kinetic energy equals the potential energy in the steeper part of V (φ). After
that, the scalar is oscillating around the minimum of the potential. Figure taken from [22].

and many more (for an overview see e.g. [26, 27, 28] and references therein). In this
Chapter, we will only focus on the classical design of [24, 25], because it is still the most
accepted one in Cosmology today and its basic concepts described here already form a
groundwork for many of the alternative inflation theories. According to the usual notation
in Cosmology, we define the speed of light equal to unity: c = 1.

A starting point for the inflation scenario is the request for a shrinking comoving Hubble
radius (a(t)H(t))−1:

d

dt
(a(t)H(t))−1

< 0 (1.2)

where

H(t) =
ȧ(t)

a(t)

represents the Hubble-Parameter. As we have seen in the previous section, this condition
is the bottom line for solving a couple of main problems of the original Big Bang theory. It
can be shown with the help of the Einstein equations that requirement (1.2) corresponds
to an accelerated expansion realized by an universe with negative pressure p [22]:

d

dt
(a(t)H(t))−1

< 0 ⇒ d
2
a(t)

dt
> 0 ⇒ p > −ρ

3

Hereby, ρ denotes the energy density. It is possible to construct such a situation by
implementing a scalar field φ, called the inflaton field, whose dynamics is described by the
action

S =

�
d

4
x

�
− det(gµν)

�
1

2
R +

1

2
g

µν
∂µφ∂νφ− V (φ)

�
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with R, g
µν and V (φ) corresponding to the Ricci Scalar, the metric tensor and the po-

tential of the scalar field φ. The latter is illustrated in figure 1.1. Two so called slow-roll

parameters

� = − Ḣ

H2
, ν = − φ̈

Hφ̇

set constraints to inflation: The accelerated expansion only takes place if the condition � <

1 holds, while the requirement |ν| < 1 provides the acceleration to retain for a sufficiently
long period [20, 21, 22].

This generation of a time period with rapid expansion, by introducing the inflaton
scalar field, is the basic framework of inflation. The episode of inflation takes place during
the time the scalar is located in the flat part of the potential V (φ). It ends when the field
enters the steeper part of the potential and oscillates around the minimum.

An important aspect of this framework is the connection to the characteristics of the
CMB (see also section 1.3): It is possible to set a relation between the slow-roll parameters
�, ν and the amount of non-Gaussianity in the primordial fluctuations [36]. It was shown in
[33, 34, 35, 36, 37] that non-Gaussianities are highly suppressed by the slow-roll parameters
in the standard model of inflation. Therefore, if the model accurately represents the true
conditions of the early Universe, there should be no detectable primordial non-Gaussianity
in the CMB. The question if the current measurements agree with the last statement is
one of the main topics in this work.

1.2 The Cosmic Microwave Background Radiation

1.2.1 Origin

Shortly after inflation, the Universe was still extremely hot, but was cooling down with time
because of its expansion. At a time of approximately t = 380 000 years, the temperature
dropped to T ≈ 3000 K, which was cool enough for atomic nuclei and electrons to unite and
form the first helium and hydrogen atoms [21, 29], which is referred to as recombination.
This process can be described formally by means of the Saha equation, which puts the
fraction of ionized atoms X – here for hydrogen only – into a relation with temperature
[1]:

1−X

X2
=

4
√

2ζ(3)√
π

η

�
T

me

� 3
2

exp

�
13.6 eV

T

�

Hereby, 13.6 eV is the ionization energy of hydrogen. The parameters η and me represent
the ratio of baryons to photons and the electron mass.

Before recombination, the free electrons were preventing the existing photons to travel
freely by means of a rapid Thomson scattering [20]. In other words, the mean free path
of a photon was much smaller than the Hubble length H

−1
0 [21], which expresses the

distance a photon would have to travel to reach an observer today. After recombination,
the amount of free electrons dropped significantly, leading to a mean free path much longer
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Figure 1.2: The CMB frequency spectrum as measured by the COBE satellite. Uncer-
tainties are only a small fraction of the line thickness. The spectrum represents a nearly
perfect black body. Figure taken from [210] with acknowledgements to the COBE team.

than the Hubble length [21]. From this time period on, the photons travel nearly freely from
every point in space and into every direction. This radiation is termed Cosmic Microwave

Background (CMB) or surface of last scattering, and the moment when the photons were
not scattered anymore is referred to as decoupling or time of last scattering.

1.2.2 Characteristics

The COBE satellite, launched in November 1989, provided for the first time a full-sky
measurement of the CMB anisotropies (for the corresponding figure see page 40). It also
measured for the first time the frequency spectrum of the microwave background radiation.
The observation revealed the CMB spectrum to be a nearly perfect black body [39, 13]. The
remarkably high agreement is illustrated in figure 1.2. One can draw the conclusion that
before recombination, the Universe was in thermal equilibrium due to the rapid collisions
of photons with free electrons, since under these conditions, the frequency spectrum of elec-
tromagnetic radiation is represented by the one of a black body [20]. This was maintained
in the photons also during and after recombination.

While the CMB has a high energy in the beginning, it features today a temperature of
only 2.725 K [38]. This seems to be an odd fact at first sight, since we stated the photons
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to travel nearly freely through space. But it can easily be explained with the help of its
characteristics noticed above: Since it represents a black body, the temperature of the
radiation is inverse proportional to the wavelength λ at the peak of the spectrum [40]:

T ∝ λ
−1

This wavelength λ of the photons is in turn directly proportional to the scale factor, since
it is naturally part of the Universe and gets affected by the expansion as well [20],

λ ∝ a(t).

In summary, we obtain a direct relation between the temperature ratio and the scale factor
ratio from today t0 and the time of decoupling t∗:

T (t∗)

T (t0)
=

a(t0)

a(t∗)

To express spatial (from the observer) as well as chronological (from today) distances in
Cosmology, the redshift z is a commonly used parameter. It can be defined via the scale
factor [20] as

z =
a(t0)

a(t)
− 1.

With the help of the above mentioned dependencies, the redshift of decoupling z∗ can be
obtained by using the calculated temperature of the CMB during this time period and the
observed temperature of the CMB today [21]:

z∗ =
T (t∗)

T (t0)
− 1

Latest observations determine this parameter to z∗ ≈ 1090 [29].

Since the process of decoupling happened in every point in space at the same time,
the CMB is said to be highly isotropic. Observations confirm these considerations: The
temperature fluctuations ∆T of the measured radiation are around five magnitudes smaller
than its mean [41],

∆T

T
≈ 10−5

.

However, this only holds if one has subtracted the dipole from the CMB measurements.
This dipole is induced by the Earth’s motion with reference to the microwave background
and is around a hundred times larger than the usual temperature fluctuations [21],

∆TDipole

T
≈ 10−3

.

Figure 1.3 presents the CMB anisotropies ∆T in form of a full sky map as measured by the
WMAP probe after the first year observations. Except for the part in the centre, the tem-
perature seems indeed to be highly isotropic at first sight. However, small anisotropies can
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Figure 1.3: CMB anisotropy ∆T in mK as measured by the WMAP team [41]. The map
shows the V-band of the first year results, and is arranged in galactic coordinates in form
of a mollweide projection. The red region in the centre corresponds to the galactic centre,
which strongly distorts the measurements of the background radiation.

be measured, which represent the seed points of structure formation, as already mentioned
above. These anisotropies are mainly a consequence of the tiny density fluctuations during
the time of recombination, whose gravitational potentials the photons have to overcome
[22].

The very high temperatures in the centre of figure 1.3 are due to foreground contami-
nations caused by our galaxy. In Chapter 3.2, we will examine the technical difficulties of
the observations of the microwave background in more detail.

In contrast to that any other intrinsic anisotropy of the CMB would be of immense
cosmological interest [21, 47, 52, 45] and is also the main subject throughout this work.
We will discuss the basic principles of anisotropies of the CMB in more detail in Chapter
1.3.

1.2.3 Notations

There is more than one possibility of expressing the CMB anisotropies in a formal way.
On the one hand, we can describe the temperature fluctuations by writing ∆T (�x) =
T (�x) − �T (�x)� as above, here with �x representing the direction in which the tempera-
ture is measured. As we will see in Chapter 3.1, the WMAP data is available as a pixelised
sky, ∆T (xi), i = 1, ..., Npix, where Npix denotes the pixel number.

On the other hand, one can remember the fact that the photons reach the observer
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from every direction, therefore can the microwave background be seen as the surface of a
sphere S. Hence, the temperature map ∆T (�x) can as well be expressed via the spherical
harmonics Y�m : S → C and their coefficients a�,m with � ≥ 0, −� ≤ m ≤ �, [20, 21, 22]:

T (�x) =
∞�

�=0

��

m=−�

a�mY�m(�x) (1.3)

In addition, the direction vector �x is often replaced by a combination of latitude and
longitude, �x = (θ, ϕ). The harmonics are the spherical analogue of a Fourier series. The
first sum in (1.3) theoretically ranges to infinity, but it is usual to set a maximum � ≤ �max.
Hence, we obtain (�max + 1)2 different harmonics Y�m in total.

The Y�m represent a set of orthonormal, complex valued basis functions on the sphere
(see e.g. [46, 40]). They are defined via the Legendre polynomials P

m

�
(x) as

Y�m(θ, ϕ) =

�
2� + 1

4π

(�−m)!

(� + m)!
P

m

�
(cos θ) e

imϕ

with

P
m

�
(x) =

(−1)m

2��!
(1− x

2)m/2 d
�+m

dx�+m
(x2 − 1)�

The index m specifies the angular orientation of the spherical harmonic, while the index �

is responsible for the characteristic angular size and is therefore isotropic [42].
Each Y�m comes up with a parameter a�m, which can be calculated as an integral over

the complete sphere S, [22]

a�m =

�

S

Y �m(�x) T (�x) dΩ , (1.4)

with Y �m denoting the complex conjugate of Y�m. The parameters a�m are complex valued
as well, and can be written as a�m = |a�m| e

iφ�m with an amplitude |a�m| and a phase φ�m.
Since the resulting map T (�x) only contains real values, it holds:

Y�,m = (−1)|m|Y �,−m(x) (1.5)

which, in combination with (1.4), also leads to

a�,m = (−1)|m|a�,−m(x) . (1.6)

Disregarding the simplification due to �max, the set of a�m’s contains the entire information
of the temperature fluctuation map T (�x).

Another very important quantity in this context is the power spectrum,

C� =
1

2� + 1

�

m

|a�m|2 , (1.7)
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which is a sum of the amplitudes of the Fourier coefficients, and describes the Fourier
transform of the two-point correlation function. The underlying idea of the power spectrum
is the above mentioned assumption that the microwave background radiation is isotropic.
Thus, the distribution of the a�m’s should be independent of the index m. This assumption
is reflected in equation (1.7).

The power spectrum is a very useful tool in Cosmology and offers a multitude of ap-
plications. The main reason for this is the fact that if the CMB is Gaussian, the power
spectrum completely characterises all the information of the temperature anisotropies T (�x)
(see the following section 1.3). This would of course represent an immense simplification:
The entire information about the structural properties of the CMB map would be com-
pressed in only �max values. However, the Gaussianity of the CMB is controversial and its
investigation the main topic of this work.

In addition, the shape of the power spectrum is connected to the physics of the begin-
nings of our Universe. In the existing baryon-photon plasma, the gravitational attraction
of and the radiation repulsion in the density enhanced regions acted together to produce
acoustic oscillations [21, 47]. These created temperature fluctuations in the CMB, which
are again reflected as a wave-shaped profile in the power spectrum. The most recent
WMAP data detect three peaks at � ≈ 200, 550, 800, whereupon the first is clearly the
most pronounced [43]. By measuring the shape and the location of these peaks, a plenitude
of conclusions for cosmological parameters can be drawn [42, 52, 45]. This is mostly done
by assuming a flat adiabatic ΛCDM model, and adjusting its parameters in a way that the
resulting power spectrum agrees with the measurements [48]. In doing so, constraints can
be drawn about e.g. the cosmic baryon and matter densities Ωb and Ωm, the age t0 and the
curvature k of the Universe, the epoch of matter-radiation equality zeq and the primordial
helium mass fraction YHe [43, 48].

1.3 The Challenge of Anomalies in the CMB

One of the key questions in Cosmology today is the question, if the measured microwave
background satisfies the requirements that the theoretical framework is demanding for:
Isotropy and Gaussianity, both already mentioned above. Although these two properties
often appear in combination, they describe different effects:

• (Statistical) Isotropy demands that there is no preferred direction with particular
structural characteristics. In combination with the Copernican Principle – presuming
that our spatial position in space is not exceptional – this would lead to homogeneity
(see e.g. [49]). One would speak of anisotropy, if there exists at least one direction
with significant deviations from the usual structural behaviour.

• Gaussianity refers in this context to the assumption, that the coefficients of the
spherical harmonics are independent Gaussian random variables [52],

P (a�m) da�m =
1√

2πC�

exp(−a
2
�m

2C�

) da�m .
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The variance is expressed by the respective value of the power spectrum. Therefore,
if Gaussianity holds, the power spectrum characterises all the information that is
contained in the CMB. From the equation it follows that the amplitudes |a�m| ought
to be Rayleigh distributed, while the phases φ�m follow a uniform distribution in the
interval [−π, π]. In contrast to that, there is no specific definition for non-Gaussianity,
except for the request for a deviation from Gaussianity in any possible way.

As already mentioned in section 1.1.2, both characteristics are a consequence of the
physics of single-field slow-roll inflation [21, 22, 37, 45, 50, 51, 52, 53, 54]. However, other
inflationary theories [33, 36, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68] could
induce anisotropies or non-Gaussianities. Also, models leading to a scale-dependent non-
Gaussianity are conceivable [69, 70]. Besides, there could exist topological defects like
cosmic strings [71, 72, 73, 74] or particular phenomenons as the occurrence of large voids
[75, 76, 77, 78, 79], that could generate deviations from the above statements. Thus,
a detection or non-detection of anisotropies and non-Gaussianities is of highest interest,
since it allows to discriminate between different models of inflation and sheds light on basic
conditions of the Universe.

However, there are also some known effects that have influence on Gaussianity and
isotropy [21, 42, 45, 47, 52, 53]. Those can be roughly divided into effects concerning
the physics of the very early Universe – and therefore the primordial CMB – and interac-
tions with the microwave background during the flight of the photons; so-called secondary
anisotropies. Both types induce anisotropies, whereupon only the latter can significantly
influence Gaussianity as well [47].

The primordial CMB is affected by the Sachs-Wolfe effect [80], which describes the
already above stated existence of density fluctuations in the early Universe, whose different
potential wells the photons have to escape. In addition, silk damping [81] takes place since
recombination is not happening instantaneously.

In contrast to that, there are the effects on the CMB after decoupling, like e.g. the
integrated Sachs-Wolfe effect (ISW) [80], which refers to the time-dependent gravitational
fields. Their potential wells decrease due to the expansion of the Universe, leading to
a blueshift in the photons that pass through these fields. In some literature, early ISW
ranks among the primordial effects instead of the secondary anisotropies. Another effect
is the Sunyaev-Zel’dovich (SZ) effect [82, 83], which can be divided into a thermal part,
that denotes the Compton scattering of the CMB photons by hot electron gas in galaxy
clusters, and a kinetic part, which describes diverse scattering due to the motion of the
gas in these clusters. As a result of gravitational interactions with matter, gravitational

lensing [84] is an important part of the secondary anisotropies as well.
Apart from all those effects, there are foregrounds and other technical difficulties distort-

ing the CMB signal and therefore maybe biasing the measured isotropy and Gaussianity.
These will be discussed in more detail in Chapter 3.2.

Nowadays, it is still accepted by a large part of the cosmological community that the
CMB is both isotropic and non-Gaussian. As stated above, the measured fluctuations
∆T (�x) of the background radiation seem to agree with the theoretical prediction at first
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Figure 1.4: Three different anomalous and currently still unexplained features in the CMB
that were detected in the recent years: On the upper left, the anomalous alignment of the
quadrupole and the octopole that is shown as a plot of the temperature anisotropies of
only these two multipoles. The black curve marks the position of the ecliptic plane. The
projection on the upper right refers to the power asymmetry, which is illustrated by the
directions of the dipoles of the estimated power distributions when considering blocks of
100 multipoles each. The colours of the discs specify the centres of the multipole ranges,
while the white hexagon indicates the dipole direction of the full interval � ∈ [2, 600],
and the crosses mark the northern and southern ecliptic poles, respectively. In the lower
column, the Cold Spot is shown as it appears in the temperature map of the WMAP
seven-year release (left) and in the response map of the applied wavelet analysis (right).
Figures taken from [117, 134, 152].

sight. However, there is also a growing number of analyses that nevertheless detect incon-
sistencies in the data. In the following, we will point out some of these inconsistencies. The
methods that were used to analyse the CMB, as well as the basic principles and problems
of a non-Gaussianity analysis will then be discussed in more detail in Chapter 2.

There is a plethora of analyses that discovered deviations from Gaussianity in a general
sense, as for example [44, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,
102, 103].

But there are also some more specific anomalous features in the CMB, that were sub-
ject to a lot of investigations. The most important ones are the alignment of the large
multipoles, the power asymmetry of the temperature fluctuations, and the Cold Spot. We
will discuss these in more detail in the following.
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The detection of an anomalous alignment of the quadrupole (� = 2) and the octopole
(� = 3) was first reported in [104] and [105]. In [106], this alignment was found to involve
the entire multipole range � = 2 − 5, and is since then a topic of various investigations
[107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120]. The upper left plot
of figure 1.4 shows the temperature anisotropies of the quadrupole and the octopole of the
WMAP seven-year measurements in combination with the ecliptic plane. The probability
for the obvious alignment to happen by chance is around 0.1% [117]. In addition, the
ecliptic plane seems to be correlated to this alignment, and separates a hot spot in the
northern sky and a cold spot in the south. Up to today, there is no explanation for this
correlation [117].

Another anomalous feature that puts isotropy into question is the discovery of power

asymmetries in the CMB [121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133,
134, 135, 136, 137, 138, 139]. In the upper right plot of figure 1.4, the results of an
investigation of a combination of two bands of the WMAP seven-year data is presented.
Several separate sets of 100 multipole blocks inside the interval � ∈ [2, 600] were analysed
individually. The directions of the dipoles of each of these multipole blocks are indicated
by the coloured discs. Obviously, all of these lie very close to each other, but also close
to the southern ecliptic pole and to the dipole of the full interval � ∈ [2, 600], that are
indicated by a cross and the white hexagon, respectively. This implies that the hemisphere
centred in these directions contains more power than the opposite hemisphere. In addition,
the different multipoles seem to be correlated to each other. No known systematic effects
or foregrounds are found to be able to explain this asymmetry [134].

Finally, local features – first and foremost the famous Cold Spot [127] – were detected
and confirmed by several analyses [77, 78, 130, 133, 140, 141, 142, 143, 144, 145, 146, 147,
148, 149, 150, 151]. The original detection of the Cold Spot was accomplished by means of
a wavelet analysis of the CMB temperature anisotropies, and is shown in the lower column
of figure 1.4. Especially in the wavelet response map on the right, the Cold Spot is clearly
visible. Systematics or foreground effects were ruled out to be responsible for this local
feature, and its chance to happen accidentally is around or less then 1%, depending on the
type of the analysis [152].

To which extent all these analysis are significant is still subject to discussion, though
[153, 154, 155].
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Chapter 2

Methods for testing the
non-Gaussianity of the CMB

2.1 Statistical Tests for non-Gaussianity

2.1.1 Basic framework

Cosmologists searching for non-Gaussianity in the CMB have to deal with two major
fundamental statistical problems. First, it is not clear what to look for and which way is
the best for doing that. Let us recall that non-Gaussianity - which an analyst intends to
find or to rule out - can occur in various ways, since it is only defined as anything except
Gaussianity (see Chapter 1.3). Therefore, there is a nearly infinite number of thinkable
investigations. Besides, any analysis resulting in a non-detection of anomalous behaviour
does not prove the CMB to be Gaussian, but just rules out a single type of non-Gaussianity
corresponding to the characteristics of the analysis.

However, also the detection of peculiarities in the data does not immediately imply
intrinsic non-Gaussianities in the microwave background, because the high amount of fore-
ground contributions could leave hidden imprints in particular in the results of more com-
plex analyses.

The second fundamental statistical problem of the CMB is the fact that there is only
one realisation. Irrespective from foregrounds or technical difficulties, there is in theory
no way to tell if a possibly detected anomalous behaviour is due to different underlying
physics or just a statistical fluke. There is the idea of using the polarisation of the CMB
as a new independent sample (e.g. [151, 45, 156]), however this strongly depends on the
characteristics of the investigation and can not be seen as a solution in general.

The first of the two problems lead to an amazingly large amount of different measures
for non-Gaussianity. A short overview over some of these measures will be given in section
2.2.1. The second problem yields the fact that one has to interpret the results of the
different analyses with great caution. Since any kind of possible measure is “allowed” to
be used, its choice could sometimes be motivated by the characteristics of the data itself.
The choice would therefore be an a posteriori one (cf. [154, 155]). The fact that all
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analyses naturally focus on anomalous features in the data, combined with a plethora of
different measures used today, could lead to some sort of preselection and therefore lowers
the validity of possible anomalies. However, this does not mean that all analyses working
on non-Gaussianity become redundant. In fact, every investigation claiming deviations
from the theoretical properties of the microwave background is supposed to obtain a very
significant result, that is in the best case confirmed by different measures. Apart from
that, checks on systematics and ruling out foreground effects as a cause for the deviations
is always necessary.

A common technique to search for non-Gaussianity in the microwave background is to
construct simulated maps, that are Gaussian random fields which mimic the properties of
the ΛCDM model. The analysis is then performed on both the data and a set of these
simulations. Eventually, a comparison of the results gives information about how well the
measured CMB corresponds to the theoretical demands (e.g. [131, 133, 148]). This is
also accomplished in this work in Chapter 4 for the WMAP five-year data set. On the
other hand, some investigations make use of particular assumptions about the nature of
the non-Gaussianities by parametrising it with e.g. the non-linear coupling parameter fNL

(e.g. [89, 98, 45], see also below).
Clearly, both procedures depend on the model or the assumptions that are implemented.

However, it might be favourable to rely on as few requirements as possible. A complemen-
tary and elegant way to investigate the non-Gaussianity of the CMB is an analysis that is
completely model-independent. In the following Chapter, we will introduce the surrogate
method, that describes one possibility of a thorough data-driven, i.e. model-independent
investigation.

2.1.2 Surrogates on the complete sky

The concept of constructing surrogates from a given data set originates from the field of
non-linear time series analysis. The basic idea was introduced in the paper of Theiler et al.
[157] and subsequently applied to several different data sets, like fluid convection, sunspots,
as well as electroencephalograms [158], and was continuously developed [159, 160]. Further,
constrained randomisation has already been used before to generate CMB data sets with
random phases as a technique for analysing the effect of cosmic strings. This was combined
with a multifractal formalism in [161] for detecting cosmic string induced non-Gaussianity
on synthetic CMB data sets. The surrogate method can be applied on nearly all complex
systems, as outlined in [162] for the climate, stock-market and the heart-beat variability. In
combination with scaling indices, which is the measure used throughout this work and will
be presented in section 2.2.2 below, surrogates were applied for large scale structure analysis
[163] and non-Gaussianity investigations on simulated two-dimensional temperature maps
[164].

The starting point for the surrogates technique is a given data set and some null hy-
pothesis, whose validity in the data set is to be tested. The fundamental idea is then
to generate surrogate data sets from the original data, which are consistent with the null
hypothesis. Apart from the characteristics that are affected by the hypothesis, these sur-
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rogates share exactly the same properties as the original data set. Next, the data as well
as the surrogates are tested by means of some measure that is sensitive to characteristics,
which could be induced by deviations from the null hypothesis. If different results are
obtained for the original and the set of surrogates, the null hypothesis is rejected. If not,
the hypothesis is confirmed.

We apply this basic concept to CMB non-Gaussianity analysis. As null hypothesis,
we take the random phase hypothesis, which is the assumption that the phases φ�m of the
spherical harmonic coefficients a�m are independent and identically distributed in terms
of a uniform distribution in the interval [−π, π] (see Chapter 1.3). This assumption is on
the one hand a very important and fundamental statement. Only if the random phase
hypothesis holds, the construction of the power spectrum, which represents a compression
of the information of a complete CMB map with several million data points to only around
one thousand values, is lossless and therefore fully justified [44]. On the other hand,
the statement of random phases is a direct consequence of the presumed Gaussianity of
the CMB. Since the power spectrum only takes into account the linear correlations in
the map, possible higher-order correlations can only be contained in the phases and the
correlations among them. Thus, the presence of phase correlations would clearly disagree
with Gaussianity. Any detection of inconsistencies between a CMB data set and surrogates,
whose phases do not have any correlations, would therefore directly identify non-Gaussian
behaviour of the CMB data. For this reason, the method of constructing surrogates used in
this work is based on a phase shuffling technique, which destroys possible phase correlations
of the original data set, and which is consistent with the stated null hypothesis.

Phases were already subject to analyses concerning the formation of the large scale
structure in the Universe [165]. Also, a close look at the quadrupole of the CMB [169] as well
as its foregrounds [167, 168] is possible in terms of a phase analysis. Investigations searching
for phase correlations – and therefore non-Gaussianity – of the CMB were performed in
[85, 86, 87, 88, 90, 92, 93, 94] (see also section 2.2.1 for a closer look at the results).

The method for generating surrogates by shuffling the phases is as follows: As described
in detail in Chapter 1.2.3, a temperature map T (�x), �x ∈ S, on the complete sphere S can
be expressed by means of spherical harmonics Y�m,

T (�x) =
�max�

�=0

��

m=−�

a�mY�m(�x) .

The sum consists of imax = (�max + 1)2 different summands. The coefficients a�m are
complex-valued, and can therefore be written in polar coordinates,

a�m = |a�m| e
iφ�m ,

in which the phases φ�m can be computed as

φ�m = arctan
Im(a�m)

Re(a�m)
.
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To ensure that possible outliers in the data, which do not follow the assumed probability
distributions as given in Chapter 1.3, are not affecting the results of the further process,
one has to implement the following preprocessing. However, possible phase correlations
are not affected by these two steps.

• First, the temperature values T (�x) are replaced by a Gaussian distribution in a rank-
ordered remapping. We use the expressions Told(�x) and Tnew(�x) for denoting the
temperature values before and after the remapping. Formally, we obtain:

Tnew(�xi) = D
(k)

with D(x) ∼ N (µ, σ) for x = 1, ..., Npix, and D
(1)

< D
(2)

< ... < D
(Npix). Hereby, µ

and σ denote the mean and the standard deviation of Told(�x), respectively, while k

characterises the position of Told(�xi) in the rank ordering

T
(1)
old

< T
(2)
old

< ... < T
(Npix)
old

.

• A similar rank ordering is applied to the values of the phases φ(i) = φi(�,m):

φnew(i) = D
(k)

with D(x) ∼ U([−π, π]) for x = 1, ..., imax, and D
(1)

< D
(2)

< ... < D
(imax). Similar

to above, k describes the position of φold(i) in the rank ordering

φ
(1)
old

< φ
(2)
old

< ... < φ
(imax)
old

.

Hence, all detected deviations between the underlying map and the constructed surrogates
can only be due to possible phase correlations inside the original data set.

To perform the surrogates method, one has at first to choose a shuffling interval [�1, �2]
containing the scales that are of interest in the analysis. This interval may be chosen
arbitrarily inside the possible range of all multipoles, [0, �max]. However, since in data
maps for CMB investigations, the monopole and dipole are often subtracted, the lower
bound should in this case be larger than one, �1 ≥ 2. After a convenient interval was
chosen, one applies two shuffling steps onto the underlying data map, to generate two
kinds of surrogates:

The first step is a shuffling of the phases of all coefficients a�m, m > 0, outside the
range [�1, �2]. In doing so, all phase correlations that correspond to scales that are not of
interest, are destroyed. The resulting map with the shuffled phases is termed first order

surrogate. The second step is to shuffle the phases of the first order surrogate inside the
range of interest [�1, �2], to create a map with no phase correlations at all. This step is to
be performed multiple times to obtain several data sets. The resulting maps are denoted
second order surrogates. In figure 2.1, the two phase shuffling steps are illustrated on a
�-m-diagram. In each step of this process, the phases with a negative m-value, φ�m, m < 0,
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Figure 2.1: A �-m-diagram for illustration purposes of the two phase shuffling steps: At
first, the phases outside [�1, �2] are shuffled to obtain the first order surrogate, and after-
wards, the phases inside the interval are shuffled multiple times to create several second
order surrogates.

have to be shuffled in the same way as the corresponding phases with the positive m-
value, since otherwise the imaginary parts of the coefficients a�m and spherical harmonics
Y�m would not cancel each other. Note that all surrogates possess by definition exactly
the same linear properties, that is the power spectrum, as the underlying map, since the
amplitudes |a�m| were left unchanged.

The first order surrogate is then compared with the set of second order ones by means
of some measure (see the following section 2.2 for a overview of currently used measures in
the field of CMB non-Gaussianity). Since the preprocessing steps from above ensure the
correct distributions for the temperature values and the phases, any detected discrepancies
have to be traced back to the phase correlations inside the first order surrogate, and are
therefore a sign of non-Gaussianity inside the chosen multipole range of the initial map.
Hence, the surrogate method presents a technique to search for deviations from Gaussianity
in a range of scales which can be chosen arbitrarily.

A special case of the shuffling technique occurs if one chooses the range [�1, �2] = [0, �max]
(or [�1, �2] = [2, �max] in case of a mono- and dipole reduced map, see above). Since this
interval covers the complete range of available multipoles, generating a first order surrogate
becomes dispensable. In this case, a comparison between the original map and the second
order surrogates shows deviations from Gaussianity on all scales.

In figure 2.2, first and second order surrogates of the seven-year ILC map are illustrated
with an underlying scale range of interest [�1, �2] = [20, 60].

Despite the advantage of analyses on all arbitrary scales, the surrogates method also
possesses a disadvantage: It requires a complete sphere, to ensure that the spherical har-
monics are orthogonal. Otherwise, the phases of the underlying map would be coupled,
which leads to induced phase correlations. For this reason, the surrogates method is per-
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Figure 2.2: An example of the phase shuffling method: The phases of the underlying seven-
year ILC map (upper left) are shuffled outside the interval [�1, �2] = [20, 60] to obtain the
first order surrogate (upper right). Two realisations of an additional shuffling of the phases
inside the interval leads to the two second order surrogates (lower row). Note that the
structural behaviour of the large scales differs between the maps in the upper row, but is
similar for all the first as well as the second order surrogates.

formed on maps, where the foreground influences – especially those due to the Galactic
plane – are reduced to a minimum. This is provided by the ILC or the NILC maps (see
section 3.2.2). The results of these investigations are presented in Chapters 5 and 6. But
to accomplish an even more thorough analysis, it is better to mask out highly foreground
affected regions like the Galactic plane, which hence puts a problem to the method. How-
ever, as a main part of this work, new ways to construct a new set of orthogonal harmonics
for incomplete skies were developed, thus solving this problem. These techniques will be
presented in detail in the following section, and are applied to data sets in Chapter 7.

2.1.3 Surrogates on an incomplete sky

The spherical harmonics form an orthonormal basis set on the complete sphere S. This
statement is expressed formally by the equation

�

S

Y�m(�x) Y��m�(�x) dΩ =

�
1 for � = �

� and m = m
�

0 else
(2.1)

where Y�m, Y��m� characterise two harmonic functions with �, �
� ≥ 0, −� ≤ m ≤ �, −�

� ≤
m
� ≤ �

�. This equation describes a fundamental condition. Only if orthogonality holds,
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the coefficients a�m of a map f(�x) are unique.
If one replaces the complete sphere S in equation (2.1) by some incomplete sky S

cut,
the orthogonality of the spherical harmonics obviously vanishes. This leads to severe
problems, since in this case the coefficients a�m would be coupled. Hence, the random
phase hypothesis no longer holds, and the surrogates technique from the previous section
2.1.2 becomes inapplicable.

Incomplete skies often appear in CMB non-Gaussianity analyses: Highly foreground
affected regions, in the first place the Galactic plane, strongly influence the Gaussianity of
the map. Even the foreground-reduced maps, as provided by the WMAP team, still have
obvious artefacts in the Galactic plane (cf. figure 3.4 on page 43). The best way to deal
with this, is to apply a sky cut on these regions (cf. Chapter 3.2). The usage of full-sky
maps with minimal Galactic foreground contribution, like the ILC [38] or the NILC map
[226], is another solution to the problem, which avoids the sky cut. But the map-making
process of these maps could induce phase correlations, which can then not be distinguished
from the intrinsic higher-order correlations of the CMB.

However, there are ways to overcome this problem: In [170, 171], a method was pre-
sented, which transforms the real-valued spherical harmonics to a new set of harmonics,
that is orthonormal on an user-defined cut sky. This method was improved and extended
in [172]. In the present work, we adopt these techniques onto the complex-valued spher-
ical harmonics, and combine it with the surrogates analysis, to enable investigations by
surrogates on an arbitrary cut sky.

Our goal is to express any CMB temperature map

f(�x) =
�max�

�=0

��

m=−�

a�mY�m(�x), �x ∈ S,

on an incomplete sky S
cut by means of new coefficients a

cut

�m
and new cut sky harmonics

Y
cut

�m
: S

cut → C,

f(�x) =
�max�

�=0

��

m=−�

a
cut

�m
Y

cut

�m
(�x), �x ∈ S

cut
,

where Y
cut

�m
is an orthogonal basis set on S

cut, and thus a
cut

�m
being unique.

At first, we write the spherical harmonics and the original coefficients of the underlying
map, as well as the harmonics and the coefficients that we would like to obtain, into one
vector each. In doing so, we only consider the modes with with m ≥ 0:

Y (�x) := [Y0,0(�x), Y1,0(�x), Y1,1(�x), ..., Y�max,�max(�x)]T ,

Y
cut(�x) := [Y cut

0,0 (�x), Y cut

1,0 (�x), Y cut

1,1 (�x), ..., Y cut

�max,�max
(�x)]T ,

a := [a0,0, a1,0, a1,1, ..., a�max,�max ]
T

a
cut := [acut

0,0 , a
cut

1,0 , a
cut

1,1 , ..., a
cut

�max,�max
]T

All vectors have the length of imax := (�max + 1)(�max + 2)/2. With the help of these
terms, we can express our goal in a different way: We would like to determine two ma-
trices B1, B2 ∈ Cimax×imax , that transform the vectors of the spherical harmonics and the
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original coefficients into the cut sky vectors of above, which is characterised formally by
the following equations:

Y
cut(�x) = B1 Y (�x) (2.2)

a
cut = B2 a (2.3)

It is possible to evaluate these two matrices by applying several matrix computations
onto the vector Y (�x). The first step, important for both the calculation of B1 and B2, is
the definition of the coupling matrix and its cut sky counterpart C, C

cut ∈ Cimax×imax :

C :=

�

R

Y (�x)Y ∗(�x)dΩ

C
cut :=

�

R

Y
cut(�x)(Y cut)∗(�x)dΩ

where R characterises an area on the sphere, and Y
∗ denotes the hermitian transposed

of Y . When working with a pixelised sky, like e.g. in the HEALPix environment used
for the WMAP data set, one has to replace the integral with a sum over all pixels that
belong to R. The coupling matrices can be treated as positive definite for low �max. In
addition, C and C

cut are hermitian by definition: For the diagonal of C, the components
read as ci(�,m),i(�,m) =

�
R

Y�mY �mdΩ, which is obviously real-valued. Outside the diagonal,

we obtain ci(�,m),i(��,m�) =
�

R
Y�mY ��m�dΩ =

�
R

�
Y �mY��m�

�
dΩ = ci(��,m�),i(�,m). The equivalent

holds for C
cut.

To evaluate B1, we have to recall the orthonormality condition (2.1) from above. Apply-
ing an adequate condition to the incomplete cut sky S

cut, it follows that a set of harmonics
Y

cut

�m
, which is orthonormal on the cut sky, needs to fulfil the equation

C
cut = Iimax .

Hereby, Iimax denotes the unit matrix of size imax. We can use equation (2.2) to change
this condition to

B1CB
∗
1 = Iimax (2.4)

It is possible to decompose the coupling matrix and to calculate a matrix A ∈ Cimax×imax

which fulfills C = AA
∗. Hereby, different matrix decomposition methods can be used, as

for example the Cholesky or the eigenvalue decomposition. We will discuss this important
step of the calculation in more detail below. Applying this decomposition to the above
equation leads to

(B1A)(B1A)∗ = Iimax ,

which offers the simple solution B1 = A
−1. Note that this does not have to be the only

possible solution: In general, every matrix B1 that fulfils equation (2.4) is applicable.
For B2, we rewrite equation (1.4), which offered a formula for the computation of a�m,

into a vectorial form,

a =

�

S

Y (�x)f(�x)dΩ
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or correspondingly

a
cut =

�

Scut

Y
cut

(�x)f(�x)dΩ .

By inserting (2.2) and replacing the map by means of f(�x) = a
T
Y (�x), we obtain

a
cut =

�

Scut

B1(Y (�x)Y ∗(�x))T
a dΩ = B1C

T
a .

Again, we make use of the above introduced matrix decomposition and apply additionally
the result of the first transformation matrix from above, B1 = A

−1, which leads to

a
cut = B1(AA

∗)T
a = A

T
a .

Thus, it follows B2 = A
T .

So far, we ignored the cut sky harmonics Y
cut

�m
(�x) and coefficients a

cut

�m
for m < 0. For

their computation, we make use of equations (1.5) and (1.6). We assume these equations
to be valid also in the cut sky regime,

Y
cut

�,m
= (−1)|m|Y

cut

�,−m
(x)

a
cut

�,m
= (−1)|m|acut

�,−m
(x) ,

and can thus easily get the missing terms. Nevertheless, the above equations could in
general lead to a non-orthogonal set of cut sky harmonics, since each Y

cut

�,−m
is by definition

only orthogonal to its counterpart Y
cut

�,m
, but possibly not to the rest of the harmonics. Still,

for all sky cuts and �-ranges that were used throughout this work, the cut sky harmonics
were tested and confirmed to be orthogonal.

In summary, both transformation matrices B1, B2 can be easily determined once the
decomposition of the coupling matrix C = AA

∗ was successful, and we obtain

Y
cut(�x) = A

−1
Y (�x) (2.5)

a
cut = A

T
a . (2.6)

However, the matrix decomposition is – from a numerical point of view – the most difficult
part of the cut sky procedure, since the matrix C grows exponentially with the fourth power
of �max. The choice of which decomposition technique one uses has a strong influence on
the characteristics of the cut sky harmonics Y

cut

�m
. In this work, we will apply three different

decomposition methods, the Cholesky, the eigenvalue, and the singular value decomposition

(cf. e.g. [173]). All three techniques require the coupling matrix to be positive definite,
which holds up to some �max that depends on the applied sky cut. The differences between
the three decompositions are explained in the following.

Cholesky Decomposition

The easiest approach is the Cholesky decomposition, which was already used for the real-
valued cut sky harmonics in [170] and [172]. It defines the matrix A to be lower triangular
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(and therefore A
∗ to be upper triangular), and calculates then step by step a solution for

each row of A. For example, the first three diagonal elements of A have to fulfil

(c11) = (a11)
2

(c22) = (a21)
2 + (a22)

2

(c33) = (a31)
2 + (a32)

2 + (a33)
2

, ...

which can be solved in combination with similar (but more complex) equations for the off-
diagonal terms. The Cholesky decomposition is implemented in nearly every mathematical
software today and provides the fastest results of all three matrix decompositions used in
this work. Another advantage is the fact that A is lower triangular. Having a look a
equation (2.6), one can see that this leads to a comfortable situation: In this case, all cut
sky coefficients a

cut

i∗(�,m) only depend on the full sky coefficients of higher multipoles, ai(�,m),
i ≥ i

∗. Therefore, a monopole and dipole reduction is still possible, since these are only
contained in the first four cut sky coefficients.

Eigenvalue Decomposition

Another possibility is to apply the eigenvalue decomposition, which was also used in [172]
(identified there as “singular value decomposition”, which is not necessarily wrong, as we
will see below). The basic idea relies on the possibility to rewrite the coupling matrix in
the following way [173]:

C = V WV
∗

,

where the columns of V contain the eigenvectors of C, and the diagonal matrix W contains
the corresponding eigenvalues. For a positive definite and hermitian C, these eigenvalues
are real-valued and larger than zero, and can therefore be used to divide the above term
into

C = V W
1/2(V W

1/2)∗ ,

which leads to the solution A = V W
1/2. Hereby, W

1/2 denotes the matrix that contains
the square roots of the elements of W .

Singular Value Decomposition

A method very similar to the eigenvalue decomposition is the singular value decomposition.
This is based on the fact that one can write [173]

C = UWV
∗

.

Hereby, in contrast to above, U contains the eigenvectors of CC
∗, V the eigenvectors of

C
∗
C, and the diagonal matrix W the eigenvalues of either CC

∗ or C
∗
C, which leads to

the same result. These eigenvalues are also termed singular values of the matrix C. Since
C is hermitian, it follows CC

∗ = C
∗
C and therefore U = V . Hence, we obtain

C = UWU
∗ = (UW

1/2)(UW
1/2)∗
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Figure 2.3: Examples of the original spherical (first column) and the new cut sky harmonics
for (�, m) = (20, 0), (20, 10) and (20, 20) (from top to bottom). The harmonics were
constructed by means of the singular value decomposition with additional householder
transformation for lmax = 20 and a constant latitude cut of |b| < 30◦ (second column) and
|b| ≥ 30◦ (third column), respectively. Only the real part of the complex-valued harmonics
is shown in each plot.

and thus the result A = UW
1/2. When applying this method, it is important to consider

the following: For a hermitian matrix like the used coupling matrix C, it can be shown that
the resulting matrices A of eigenvector and singular value decomposition are theoretically
exactly consistent with each other (cf. e.g. [173]). However, this does not hold in practice:
The decomposition by means of the singular values yields numerically far better results
than the eigenvector decomposition, since it can be applied onto larger coupling matrices
(and therefore higher �max) and provides a faster calculation.

There exist two technical procedures that improve the decomposition processes from
above:

First, the Cholesky decomposition has the advantage of a triangular transformation
matrix. This does not hold for the other two decompositions, but in this case it is again
possible to decompose the matrix A into a triangular matrix A

� and an unitary matrix U

with the same size each,

A = A
�
U ,

by applying a Householder transformation. The unitary matrix can then be ignored, since
it does not change the decomposition equation C = AA

∗, and therefore one can use A
�

instead of A. See the Appendix for a more detailed description of this technique.
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Figure 2.4: A set of second order surrogates for the WMAP seven year ILC map (upper
left) for a constant latitude cut, that removes |b| < 20◦ of the Galactic plane. Here, the
multipole limit is �max = 40 (also for the original ILC map) and the shuffling range is
chosen as [�1, �2] = [2, 40]. This represents the special case, where a shuffling outside the
range is unnecessary, and therefore no first order surrogate exists.

Second, when applying a constant latitude cut, the majority of the terms of the coupling
matrix C becomes trivial. This simplifies its calculation as well as its decomposition. See
again the Appendix for more details.

Examples of the new cut sky harmonics for two different constant latitude cuts are
illustrated in figure 2.3.

After the calculation of the new sets of cut sky harmonics Y
cut

�m
(�x) and coefficients

a
cut

�m
= |acut

�m
| e

iφ
cut
�m corresponding to the underlying map f(�x), one can finally apply the

surrogates method. Similar to the previous section 2.1.2, the phases

φ
cut

�m
= arctan

Im(acut

�m
)

Re(acut

�m
)

are shuffled, while the amplitudes |acut

�m
| are preserved. Each shuffling results in a new set

of a
cut

�m
’s, which corresponds to one cut sky surrogate map. Special care has to be taken

when choosing the shuffling range [�1, �2], since the scales of the structural behaviour of
the map might no longer be preserved in the cut sky coefficients. For low �max, a rough
scale similarity still holds, though. An example of a surrogate set of the WMAP seven-year
ILC map with a multipole limit of �max = 40 and a shuffling range of [�1, �2] = [2, 40] is
presented in figure 2.4.
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Figure 2.5: The σ-normalised deviations between a simulated CMB map and its surrogate
data sets. The colour of each pixel illustrates the mean deviation for the hemisphere around
that pixel.

But this result is not satisfying yet because of one remaining problem: By applying the
cut sky transformation, the phases of the underlying data map additionally get correlated
due to equation (2.6). This effect is shown in figure 2.5, which illustrates the results of
a naive cut sky analysis of a simulated Gaussian CMB map with independent phases by
means of scaling indices (see section 2.2.2 below), for a series of increasing constant latitude
cuts, that remove |b| < 10◦, |b| < 20◦ and |b| < 30◦ of the Galactic plane. The colour-coded
pixels show the σ-normalised deviations between each hemisphere of the original and the
surrogate data sets around this pixel. The details of this investigation are not important for
the moment and will be discussed in more detail in Chapter 4. While the full sky analysis
– correctly – detects no significant deviations between the simulation and its surrogates,
a clear shift to negative values, and therefore phase correlations, are identified for the cut
sky cases. This shift is getting larger for increasing cuts, which clearly points towards a
systematic effect.

A convincing analysis should therefore be able to remove these systematic effects. In
Chapter 7, we will return to this problem and present an appropriate solution, thus enabling
investigations by means of surrogates on an incomplete sky.
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2.2 Measures for non-Gaussianity

2.2.1 Overview over currently used measures

As soon as simulations or surrogates are created, one needs a measure being sensitive
to some characteristics of the input maps and providing output values that can then be
used for a comparison with the original data set. As we stated in section 2.1.1, any kind of
possible deviation from as well as consistency with Gaussianity marks an interesting result.
Thus, one could think of a large amount of reasonable measures that could be used for the
comparison. In fact, a plethora of different measures has been applied in CMB analysis
until today. In general, these can be separated into global and local measures.

Global Measures

Measures of global type are related to the characteristics of the map as a whole. One of
the currently most used measures is the angular bispectrum (e.g. [45, 89, 98]), which is the
harmonic transform of the three-point correlation function. Three different configurations
of the bispectrum are favoured. These depend on the shape of the triangle describing the
three-point correlation function, and are termed “local” (referring to a “squeezed” triangle
with two sides much larger than the third, [174]), “equilateral” [175] and “orthogonal”
[176]. The result for each configuration can be expressed as one single value, the so-called
non-linear coupling parameter fNL, which describes the amount of non-Gaussianity of the
primordial gravitational potential: fNL = 0 would refer to the Gaussian case, while any
larger or smaller value points towards deviations from Gaussianity. Both the parameter
fNL as well as the bispectrum can be used in combination with other techniques, e.g. the
bispectrum with the help of the needlet coefficients (see also below), which is then referred
to as needlet bispectrum [97, 99, 100]. Another global measure is the power spectrum, which
we defined already on page 11, or the corresponding 2-point correlation function in real
space. These measures were applied in [91, 96, 121, 125, 134, 136, 137]. Although the power
spectrum is not a measure for non-Gaussianity (since it only analyses the Gaussian part
of the temperature anisotropies, see section 1.2.3), it is listed here due to the important
results concerning asymmetries in the CMB sky: The power spectrum can be estimated
using parts of the sky only, hence modifying it to a measure of local type, which enabled
the first detection of power asymmetries in [121] (cf. Chapter 1.3). The next example for
global measures are Minkowski functionals. These are three related measures, which can be
interpreted as area, perimeter, and Euler parameter, that focus on geometrical structures
in the data [89, 122]. In doing so, the map is grouped into active and inactive pixels
that are defined as pixels with lower/higher values than some given threshold. Then, the
structural behaviour of these two kinds of pixels is observed for different threshold values.
In Chapter 7, we will use the Minkowski functionals on cut sky surrogates parallel to an
analysis by means of the scaling indices, that are described in more detail in the following
section 2.2.2. Similar to the Minkowski functionals, the length of the sceleton describes an
analysis that examines the length of the zero-contour line of the map, which is defined by
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derivatives of the field in different directions [122]. Another two global measures are the
genus analysis [126] and multipole vectors [107, 111, 113, 117, 115, 119, 120]. The former
investigates the different quantities of hot and cold spots, while the latter forms a set of
unit vectors, that can be used to describe and analyse a given multipole �. Finally, phase

mapping techniques are a useful tool to detect deviations of the map from a Gaussian
random field [85, 86, 87, 88, 90, 92, 93, 94]. The basic assumption for this kind of analysis
– that is independent and identically distributed phases – is the same as we used above for
the construction of surrogates.

Local Measures

In contrast to the global measures, local measures investigate the behaviour of the maps in
a direction-dependent way. This offers the possibility to identify the position of anomalies,
which can then for example be compared with a large-scale structure survey. In addition,
for investigations by means of local measures, one can simply exclude heavily foreground-
affected regions like the Galactic plane.

A very famous example for a local measure in CMB analysis are wavelets. A wavelet is
a filter function, that is used to transform the underlying map into wavelet space, where
the structural behaviour of the data becomes more pronounced. For CMB analysis, direc-

tional spherical wavelets [146, 147, 148], steerable wavelets [151], and spherical mexican hat

wavelets [127, 140, 142, 143, 145] have been applied, in which the investigation in [127] lead
to the first detection of the famous Cold Spot (cf. Chapter 1.3). A very recently developed
form of wavelets are spherical needlets, which allow to focus on a specific set of multipoles
[97, 99, 100, 133]. As already stated above, needlets can also be used to construct the
needlet bispectrum.

An analysis by means of local curvature classifies the map points by their type of
curvature, that is hills, saddles and lakes [124]. Their distribution on the sphere can then
be analysed and compared to that of simulations or surrogates. Similar to the power
spectrum estimation from above, some measures have in general a global behaviour, but
can be used as a local one by focusing on smaller regions on the sphere. While this
usage is an exception for the power spectrum, it is common for the so-called large-angle

non-Gaussianity indicators [101, 102, 103] and the Kolmogorov stochasticity parameter

[77, 78, 150]. The former is based on skewness and kurtosis of the temperature values inside
large-angle patches of CMB maps, while the latter examines the largest difference between
theoretical and empirical cumulative distribution function. The technique of considering
small caps on the sphere to transform a global measure to a local one was also applied for
analyses of the angular two-point correlation function in [131].

2.2.2 The Scaling Index Method

The measure for non-Gaussianity of the CMB which is applied throughout this work is
the scaling index method (SIM) [163, 164]. This measure has the ability of revealing the
topological behaviour of an input map by detecting different structures in the data, as for
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example cluster-like or sheet-like structures, as well as filaments or walls. While wavelets
are more sensitive to structures, which offer intensity variations of significant magnitude
with respect to the existing noise, scaling indices also detect structural features which
possess variations within the noise level, but not significantly higher or lower intensity
values [130].

Scaling indices have already been used for texture discrimination [177] and feature
extraction [178, 179], time series analysis of stock exchanges [180] and active galactic nuclei
[181, 182], as well as structure analysis of bone images [183] and other different medical
data, like biological specimens, skin cancer, computed tomographic images, and beat-to-
beat sequences from electrocardiograms [162]. Investigations concerning the Gaussianity
of the CMB by applying the SIM to simulated CMB maps and the WMAP three-year data
were performed in [130] and [164], respectively, where the method turned out to be of great
usefulness.

The basic ideas of the SIM stem from the calculation of dimensions of strange attractors
in nonlinear time series analysis. If an attractor has a non-integer dimension, it is termed
strange [184]. These attractors play an important role in the field of dynamical systems,
since systems exhibiting chaotic behaviour often possess a strange attractor in phase space
[184, 186, 191, 192]. The dimension hereby provides information about the topological
characteristics of the attractor [185, 193, 194].

The basis for the calculation of the dimension of attractors from a time series is to
perform a transformation of the time series into a point distribution in d-dimensional
Euclidian space [189]. This transformation and the d-dimensional space are also denoted
embedding and embedding space, respectively. The most common example for such an
embedding are the so-called delay-coordinates [190]. These are constructed from a time
series xi, i = 1, ..., N , of a single observed quantity from some experiment. The information
of d data points can be combined to a vectors �pi in d-dimensional Euclidian space in the
following way:

�pi = (xi, xi+τ , ..., xi+dτ ) , i ∈ {1, ..., N − dτ}

Here, the time interval τ which specifies the distance between the data points is termed
delay time or lag. The resulting point set provides the analyst a completely new access
for investigations of the data set. It was proven in [190], that the transformation to delay-
coordinate maps is a diffeomorphism, that is a smooth invertible isomorph function with
a smooth inverse that maps one differentiable manifold to another. Therefore, all the
information of the time series is preserved. This result was extended to fractal sets in
[189]. We use an approach analogously to this concept to enable the usage of the SIM on
CMB data below.

After transforming the original data by means of such an embedding, and therefore
obtaining a point set P with points �pi, i = 1, ..., Np in Euclidian space, one can estimate
the local scaling properties of this point set. In [186], this is done by counting the number
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of system states around one point �pi by means of the Heaviside function H(x):

N(δ, �pi) =

Np�

j=1

H(δ − ��pi − �pj�) , (2.7)

where the Heaviside function is defined as H(x) = 1 for x ≥ 0 and H(x) = 0 else. The
parameter δ is used to set a boundary: If the distance ��pi − �pj� is larger than δ, the
resulting H(x) becomes zero. The basic idea behind the setup of equation (2.7) is the
following fact: For small r and a large amount of points Np, the measure behaves as a
power of r, with an exponent ν [186, 162]:

lim
Np→∞

1

N2
p

N(δ, �pi) ∝ δ
ν (2.8)

The exponent ν is again closely related to the dimensionality of the strange attractor
[186, 188]. Therefore, by calculating ν, one can obtain information about the topological
characteristics of the attractor. This statement is also the crucial point for the scaling
index approach, as we will see below. However, due to the discontinuity of the Heaviside
function, the derivate of H(x), and therefore also the exponent ν, cannot be evaluated
analytically. One can only approximate ν by averaging over a chosen range [δ1, δ2]:

ν ≈ log N(δ2, �pi)− log N(δ1, �pi)

log δ2 − log δ1
(2.9)

The method explained above is not the only possible approach. Similar studies were
considered e.g. in [185], where a one-dimensional return map was constructed from the
embedding space. From this return map, one can evaluate the characteristic exponent of
the attractor. In [187], the spectrum of singularities of scaling functions is computed, in
order to describe the complex scaling of the attractor.

One can now modify these ideas to apply the scaling index approach to the CMB. Here,
the fluctuations of the temperature map are characterised by the values of the pixelised sky
on a sphere S. Thus, the analogue of an embedding for a CMB analysis, is a transformation
of the combined temperature information and the two-dimensional spatial information on
the sphere into a three-dimensional point set, which includes all the information of the
original map as spatial information only. Here, the pixels (θi, φi), i = 1, ..., Npix, of S,
where Npix denotes the number of pixels and (θi, φi) latitude and longitude of the pixel
i on the sphere, are converted to a point distribution in a three-dimensional space in the
following way: Each temperature value T (θi, φi) is assigned to one point �pi, which is located
in the radial direction through its pixels centre (θi, φi), that is a straight line perpendicular
to the surface of the sphere. Thus, the three-dimensional position vector of the new point
�pi reads as

xi = (R + dR) cos(φi) sin(θi) (2.10)

yi = (R + dR) sin(φi) sin(θi) (2.11)

zi = (R + dR) sin(θi) (2.12)
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Figure 2.6: WMAP 3-year data after application of the transformation into a three-
dimensional point distribution. On the left side the full set of points is presented, while
the right side shows an x, z-projection of only the points with |y| < 0.05. In other words,
the plots show the “roughness” of the last scattering surface. Two different values for a

were used, namely a = 0.075 (above) and a = 0.225 (below). The black circles represent
the scaling ranges r = 0.075 and r = 0.225. Figure taken from [130].

with

dR = a

�
T (θi, φi)− �T �

σT

�
, (2.13)

where R denotes the radius of the sphere and a describes an adjustment parameter. In
addition, �T � and σT characterise the mean and the standard deviation of the temperature
fluctuations, respectively. The normalisation is performed to obtain for dR zero mean and
a standard deviation of a. A transformed CMB map appearing as a three-dimensional
point distribution is illustrated in figure 2.6. Here, two different values for a were used in
the embedding process.

In general, the SIM is – like ν in equation (2.8) – a mapping that calculates for every
point �pi of the point set P a single value, which depends on the spatial position of �pi in
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the group of the other points. P is three-dimensional for this chosen embedding of CMB
data. For every point �pi, we define the local weighted cumulative point distribution as

ρ(�pi, r) =

Npix�

j=1

sr(d(�pi, �pj))

with r describing the scaling range (similar to δ in equation (2.7)), while sr(•) and d(•)
denote a differentiable shaping function and a distance measure, respectively. To obtain
the scaling index α(�pi, r), we assume the following scaling law, which is similar to equation
(2.8):

ρ(�pi, r) ∝ r
α(�pi,r) (2.14)

One important difference to the above concept is the request for a differentiable shaping
function sr(•), which leads also to a differentiable cumulative point distribution ρ(�pi, r).
Therefore, in contrast to equation (2.8) above, the scaling law (2.14) becomes analytically
solvable. The scaling index, corresponding to the exponent ν in equation (2.8), can there-
fore be computed as the logarithmic derivative of ρ(�pi, r). If we choose e.g. Gaussian
shaping functions

sr(x) = e
−(x

r )n
,

the scaling index reads as

α(�pi, r) =
∂ log ρ(�pi, r)

∂ log r
=

�Npix

j=1 n
�

d(�pi,�pj)
r

�
e
−
�

d(�pi,�pj)

r

�n

�Npix

j=1 e
−
�

d(�pi,�pj)

r

�n .

In general, one can freely choose sr(•) and d(•), apart from the requirement that sr(•)
has to be differentiable. For the analysis in this work, we make use of a set of quadratic
Gaussian shaping functions and the isotropic Euclidian norm as distance measure:

sr(x) = e
−(x

r )2

d(�pi, �pj) = ��pi − �pj�2

Taking this into account, and using in addition the abbreviation dij := ��pi − �pj�2, we
obtain the final formula of the scaling indices:

α(�pi, r) =

�Npix

j=1 2
�

dij

r

�
e
−
�

dij
r

�2

�Npix

j=1 e
−
�

dij
r

�2 (2.15)

In the resulting map α(�pi, r), i = 1, ..., Npix, the structural behaviour of the underlying
point set P becomes apparent, and different types of structure can be detected very easily.
The values of α are related to structural characteristics in the following way: A point-
or cluster-like structure leads to scaling indices α ≈ 0, filaments to α ≈ 1 and sheet-like
structures to α ≈ 2. A uniform distribution of points would result in α ≈ 3. In between,
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Figure 2.7: A simulated CMB map, in which the central regions were masked out and filled
with noise whose variance corresponds to the noise characteristics of the WMAP satellite
(upper left), and the scaling index responses α(�pi, r) for three different scaling ranges:
r = 0.05 (upper right), r = 0.15 (lower left) and r = 0.25 (lower right). Different values
of α(�pi, r) correspond to different types of structure in the underlying map. Small scaling
ranges examine the behaviour of the small structures, while the characteristics of the larger
structure is displayed by the higher scaling ranges. Note the different structures inside and
outside the masked region of the simulated map, and also the different structures in the
mask itself due to the noise characteristics. Both is clearly identified by the scaling indices.

curvy lines and curvy sheets produce 1 ≤ α ≤ 2 and 2 ≤ α ≤ 3, respectively. Underdense
regions in the vicinity of point-like structures, filaments or walls feature α > 3. An example
of a simulated CMB map and its scaling index response is shown in figure 2.7.

From equation (2.15), one can see that the scaling range parameter r can be chosen
arbitrarily. This parameter weights the distances between our point of interest �pi and the
remaining points �pj (cf. definition of sr(x)). Therefore, we can make use of smaller or larger
values for r to examine the different behaviour of the small-scale or large-scale structural
configuration in the underlying map. For the analysis in the following Chapters, we mostly
make use of the ten scaling range parameters rk = 0.025, 0.05, ..., 0.25, k = 1, 2, ...10. Table
4.1 on page 49 illustrates how the positions of the resulting 90% and 10% weighting of the
quadratic Gaussian shaping function sr(x) correspond to the angular scale � in Fourier
space. In figure 2.7, three different values of r were applied to the simulated CMB map.

In addition, both R and a from the equations (2.10) and (2.13) should be chosen in a
proper way to ensure a high sensitivity of the SIM with respect to the temperature fluc-
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tuations at a certain spatial scale. For CMB analysis, it turned out that this requirement
is provided using R = 2 for the radius of the sphere and setting the parameter a, which
describes the standard deviation of the normalised temperature values, to the value of the
scaling range parameter r [130]. Thus, in this case the distance 1r corresponds to 1σ of
the temperature distribution.

When we apply the scaling index method to CMB data sets, there are different methods
of how to compare the results with those from simulations or surrogate maps. On the one
hand, one can carry out a global analysis by calculating statistics like the mean or the
standard deviation,

�αr� =
1

Npix

Npix�

i=1

α(�pi, r)

σαr =



 1

Npix − 1

Npix�

i=1

[α(�pi, r)− �αr�]2



1/2

,

of the scaling index response for the complete set of pixels. On the other hand, it is also
possible to perform a local analysis by focusing on a particular area, as for example a
hemisphere that is located in some chosen direction on the sphere. These methods will be
repeatedly applied throughout Chapters 4 to 7.
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Chapter 3

Observations of the CMB with the
WMAP satellite

3.1 Framework of the Observation

The academic history of the CMB is a rather young story: The existence of a relic radiation
was first proposed by George Gamov in 1946 [195], and the evaluation of its temperature
was done by Ralph Alpher and Robert Herman in 1950 [196]. The discovery of the radiation
by Arno Penzias and Robert Wilson in 1965 represents a milestone in the history of Cos-
mology [197]. The first measurement with a full-sky coverage was realised with the satellite
Cosmic Background Explorer (COBE) that was launched in 1989. This space mission also
detected – for the very first time – the small anisotropies of the CMB [198]. Although there
are a lot of ground based projects, like e.g. the South Pole Telescope [199], the Saskatoon
[200] and Python [201] teleskopes, the Tenerife Experiment [202], COSMOSOMAS [203],
the Very Small Array [204] or the Boomerang balloon [205], the most commonly used
data sets to date stem from the Wilkinson Microwave Anisotropy Probe (WMAP) [41],
which measures the CMB with a very high accuracy. Some ground based observations
like ACBAR [206] or the Cosmic Background Imager [207] feature a higher resolution at
smaller scales. The PLANCK probe, launched in 2009, will soon succeed WMAP by pro-
viding even more precise full-sky measurements of the microwave background [208]. Figure
3.1 illustrates the different maps of the full-sky surveys up to today.

The WMAP satellite was launched in June 2001 and orbits the Sun-Earth Lagrange
point L2 at a distance of around 1.5 million kilometres from Earth [209]. The probe contains
20 differential radiometers that are passively cooled to around 90K by solar panels, which
are always orientated towards the sun. The radiometers cover the five frequency bands
20-25 GHz, 28-36 GHz, 35-46 GHz, 53-69 GHz, and 82-106 GHz, which are denoted as
K-, Ka-, Q-, V-, and W-band, respectively. Two radiometers are arranged in the former
two bands K and Ka each, while both the Q- and V-band contain four radiometers. The
remaining eight radiometers belong to the W-band. In turn, each two radiometers form
one differencing assembly. Eventually, we obtain ten differencing assemblies which are
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Figure 3.1: Four different full-sky maps of the CMB anisotropies: As it would have been
seen by the observers Penzias and Wilson in 1965 (upper left), as it was measured by
the COBE satellite in 1992 (upper right), and as it is measured today by the WMAP
satellite for the low-frequency K- (lower left) and the high-frequency W-band (lower right),
respectively. Both WMAP figures are based on the current seven-year data. The colour-
coded temperature values range from -100 µK to 100 µK for the COBE and -200 µK

to 200 µK for the WMAP data. The map of Penzias and Wilson is for demonstration
purposes only, and hence possesses no colour-coding. All figures were taken from [210]
with acknowledgements to the WMAP team.

identified as K, Ka, Q1, Q2, V1, V2, W1, W2, W3 and W4. The WMAP team provides
the data as full-sky temperature maps per band (as shown in figure 3.1) and also per
differencing assembly [210].

The WMAP observations are accomplished with a resolution of < 13.8 arcmin FWHM
[213]. The resulting data are provided as pixelised sky maps. The ordering follows the
HEALPix scheme [211, 212]. Thereby, the sky is divided into twelve squares covering the
same size: Four attached to the Galactic north pole, four attached to the according south
pole, and four arranged around the equatorial line. Each square is then again filled with
Nside ×Nside equal-sized pixels, with Nside being an arbitrary power of 2. Hence, the total
number of map pixels Npix is obtained as Npix = 12N2

side
. The standard maps of the

WMAP team feature a resolution of Nside = 512, which corresponds to a pixel number of
Npix = 3, 145, 728. However, a couple of analyses are carried out by using only a reduced
resolution of Nside = 256 or even less, most of the times for computational reasons or to
easily remove noise effects that appear on very small scales (e.g. [127, 123, 133]).

The earliest data release of the WMAP team was made publicly available in 2003 and



3.2 Foreground and Systematic Effects 41

Figure 3.2: The three primary foreground effects as measured by WMAP, from left to
right: Synchrotron emission, free-free radiation, and dust emission. Every plot represents
the effect on the band that it affects the most, see also figure 3.3. Therefore, the former
two represent the foreground influences on the K-band, while the latter one the effect on
the W-band. Note that the scale (in mK) for the dust emission is smaller.

contained the observations of the first year. Since then, there were another three releases,
including the current seven-year data set published in 2010.

3.2 Foreground and Systematic Effects

3.2.1 Origin and Characteristics

The WMAP probe measures the microwave background radiation at a very high accuracy.
These measurements get distorted by foreground effects. There are basically three pri-
mary mechanisms [38]: Synchrotron emission, free-free radiation (also known as thermal
Bremsstrahlung) and dust emission. The intensities of each of the three foreground effects
are illustrated in figure 3.2. The WMAP satellite observes at frequencies that are very
close to the interval, where the CMB anisotropies are the highest in comparison with the
fluctuations due to distortions [38]. Nevertheless, the effects of the foregrounds are still
significant. The strongest influences of this type are caused by diffuse emission due to the
Galactic plane.

When relativistic electrons interact with the Galactic magnetic field, Synchrotron emis-

sion is produced [38, 42]. The magnetic field forces the electrons to spiral and is thus chang-
ing their velocity, which causes the emission of radiation. Typical values of such a magnetic
field are a few micro-Gauss. Synchrotron emisson dominates in the low frequency band K,
which is therefore the best band to detect it. The intensity of this emission decreases when
going to higher frequency values. In the V and W bands, synchrotron emission is already
very weak. A similar behaviour occurs for the free-free radiation. This radiation appears
due to less energetic electrons, which scatter with ions or with each other. The electrons
are decelerated, thus radiation is produced. I can be approximated with the use of Hα

emission [219]. The free-free radiation is never the dominant source in the measurements.
While the two yet mentioned effects appear mainly at the lower frequencies, the contrary
holds for the dust grains, which influences primarily the high frequency band W. Dust
can be heated by ambient radiation, which is then re-emitted as radiation. In addition,
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Figure 3.3: The influence of the three primary foreground effects onto the different fre-
quency bands of WMAP. Figure taken from [210] with acknowledgements to the WMAP
team.

dust could emit radiation due to rotational modes or excitations of their vibrational modes
[221, 222, 223]. Due to these excitations, dust grains can also lead to a modified black-
body spectrum [220]. The effects of dust can be estimated by extrapolation based on dust
models at higher frequencies. The frequency dependence of all these different foregrounds
is shown in figure 3.3.

In addition to foreground effects, artificial effects can distort the measurements, e.g.
caused by possible systematic errors in the rather complex map-making process. While
this is of course tried to be ruled out, and therefore subject to a multiplicity of analyses of
the WMAP team [29], there are indeed doubts about the correctness of some details of the
systematics, as for example about the proper way of removing the Doppler effect induced
by the joint motion of the solar system and the spacecraft [214, 215, 216]. These claims
are again in parts questioned, but to some extend also confirmed in [217, 218].

3.2.2 Methods of foreground reduction

There are different techniques on how to handle and overcome the problem of foreground
effects in the CMB signal. A very direct approach is to create templates for the three
different foreground effects from above. This is done for the WMAP data by means of the
foreground template model of [224, 225]. After establishing the foreground templates, one
can subtract them from the original measurements. Thereby, the noise effects remain in
the map. These foreground-cleaned maps are provided by the WMAP team [210]. Since
the K-band and most of the time also the Ka-band are used in the foreground reduction
process, the cleaned maps are mostly only available for the remaining Q-, V- and W-bands.
Two of them are shown in the upper row of figure 3.4.
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Figure 3.4: Three different techniques of handling distortions in the CMB: Foreground
reduction by means of template models, here illustrated by the resulting cleaned Q- and
W-band maps (upper row), the KQ75 mask (lower left), which attempts to cut out all
foreground-affected regions, and the ILC map (lower right), which is a weighted linear
combination of the different frequency bands. All maps are based on the current seven-
year data. Except for the lower left plot, the scale is in mK.

However, the behaviour of contortions inside and close to the Galactic plane is still not
completely understood. On the other hand, the major part of the measured sky can be
taken as not affected by foregrounds [38]. Thus, the idea of just cutting out the highly
distorted regions around the Galaxy is sometimes a much more helpful possibility of dealing
with the foreground problem. For this reason, the WMAP team provides two masks: The
KQ85 and the KQ75 masks, that – in their current version corresponding to the seven
year data release – cut out 78.3% and 70.6% of the whole sky, respectively. The latter
KQ75 mask is shown in the lower left plot of figure 3.4. The marginal difference between
the two masks is simply due to different settings on how conservative the foregrounds
should be treated. Although the foreground contribution is most intense in the Galactic
plane, point sources affect the observation as well. In the current seven year data release,
WMAP measured 471 point sources [38]. These are included into the masks as a circular
cut-out of 1◦ for each source, except for the Centaurus A galaxy, which is cut out by a
3◦ circle. For analyses of the CMB that need a signal as clean as possible but do not
suffer that much from a lower sky coverage, the use of masks is more advantageous than
foreground reduction. In particular, this situation often occurs for investigations that
search for non-Gaussianities with the help of a local measure, like the ones listed in section
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2.2.1 above. These analyses can simply leave out the masked parts of the sky. However,
this approach can still lead to distorting effects at the border of the mask, which can again
be compensated with techniques like a mask-filling method, as we will see in more detail
in the following Chapter 4.

Other analyses prefer or even need a full-sky coverage, though. Especially investigations
dealing with the spherical harmonics often require a complete sphere: As it can be seen
in figure 3.4, the reduction process by means of foreground templates not always leads to
satisfying results, since the Galactic plane is still apparent. For this reason, there is another
technique of obtaining a more realistic CMB signal with low foreground influences, namely
the Internal Linear Combination (ILC) method [38]. The basic idea is to combine the
measurements of all frequency bands. The sky is divided into twelve fractions, whereupon
eleven are located in the Galactic plane and only one in the minor foreground-affected
remains. Different weights for the different bands are determined so as to minimise the
variance of the temperature fluctuations at one degree resolution. For every fraction of the
sky, a separate set of weights is estimated. For the final ILC map, the boundaries between
these fractions are smoothed with a 1.5◦ kernel. One obtains a map with low foreground
influence and a reliable CMB estimation for large-scale analyses.

The ILC map provided by the WMAP team is not the only map based on the concept
of combining the different bands. An example for a related map with even lower amount
of foreground effects is the Needlet-based Internal Linear Combination (NILC) map of
[226], which is based on the WMAP five-year data. For the NILC map, the contamination
by noise and foregrounds is minimised by means of a (one-dimensional) Wiener filtering.
The important point is that the localisation not only takes places in pixel space but also
in harmonic space. While in the ILC case the modes at higher � get a very sub-optimal
weighting as they do not contribute significantly to the total variance of the one degree
map, these modes are weighted much more appropriate in the NILC map. The approach
allows to favour foreground rejection on large scales, where foregrounds dominate the total
error, and noise rejection on small scales, where foregrounds are negligible but the relative
noise level between the various WMAP channels significantly varies. In summary, the
NILC map offers a better rejection of Galactic foregrounds than the ILC map and can
be considered as the most precise full sky CMB temperature map of the according data
release [226].
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Scaling Indices applied to the
WMAP 5-year data
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Gaussian Signatures in the five-year WMAP data as identified with isotropic scaling indices,
MNRAS, 399, 1921 (2009).

Abstract: We continue the analysis of non-Gaussianities in the CMB by means of the
scaling index method (SIM, Räth, Schuecker & Banday 2007) by applying this method on
the single Q-, V-, W-bands and the co-added VW-band of the 5-year data of the Wilkinson

Microwave Anisotropy Probe (WMAP). We compare each of the results with 1000 Monte
Carlo simulations mimicking the Gaussian properties of the best fit ΛCDM -model. Based
on the scaling indices, scale-dependent empirical probability distributions, moments of
these distributions and χ

2-combinations of them are calculated, obtaining similar results
as in the former analysis of the 3-year data: We derive evidence for non-Gaussianity with
a probability of up to 97.3% for the mean when regarding the KQ75-masked full sky and
summing up over all considered length scales by means of a diagonal χ

2-statistics. Looking
at only the northern or southern hemisphere of the galactic coordinate system, we obtain up
to 98.5% or 96.6%, respectively. For the standard deviation, these results appear as 95.6%
for the full sky (99.7% north, 89.4% south) and for a χ

2-combination of both measurements
as 97.4% (99.1% north, 95.5% south). We obtain larger deviations from Gaussianity when
looking at separate scale lengths. By performing an analysis of rotated hemispheres, we
detect an obvious asymmetry in the data. In addition to these investigations, we present
a method of filling the mask with Gaussian noise to eliminate boundary effects caused
by the mask. With the help of this technique, we identify several local features on the
map, of which the most significant one turns out to be the well-known cold spot. When
excluding all these spots from the analysis, the deviation from Gaussianity increases, which
shows that the discovered local anomalies are not the reason of the global detection of non-
Gaussianity, but actually were damping the deviations on average. Our analyses per band
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and per year suggest, however, that it is very unlikely that the detected anomalies are due
to foreground effects.

4.1 Introduction

The Wilkinson Microwave Anisotropy Probe (WMAP) satellite, launched in June 2001,
measures the temperature anisotropy of the cosmic microwave background (CMB) radia-
tion with surpassing accuracy, hence providing the best insight on the beginnings of our
universe until now. From the first data release on, many investigations were made concern-
ing the Gaussianity of the CMB, since such analyses give information about the nature of
the primordial density fluctuations, which are the seeds of those temperature anisotropies.
The statistical properties of the density fluctuations are again an important observable for
testing cosmological models, especially models of inflation. Standard inflationary models
predict the temperature fluctuations of the CMB to be a Gaussian random field which is
isotropic and homogenous [23, 24, 25]. Still, there also exist more complex models that
allow non-Gaussianity in a scale-independent [36, 58, 59, 63, 62, 64, 65] or in a scale-
dependent way [70, 69]. For a detailed overview of the different models and a more specific
survey on scale-dependent ones, see [54] and [236], respectively, as well as enclosed refer-
ences. In addition, topological defects like cosmic strings can induce local non-Gaussianities
and influence the power spectrum [71, 72, 73, 74]. Considering this plethora of possible
physical mechanisms, which may induce non-Gaussianity, studies of Gaussianity of the
CMB are strongly required for testing predictions of fundamental physical theories. By
comparing the results with theoretical predictions, we can evaluate which model e.g. of
inflation can be accepted or rejected.

Non-Gaussianity implies the presence of any higher order correlations. Therefore, a
concrete description of the characteristics of non-Gaussianity is not possible, and one has
to state that it can occur in various forms. One can carry out a global analysis to search
for deviations from Gaussianity [44, 85, 89, 90, 91, 93, 96, 97, 98]. But one can also
concentrate on more specific investigations (this is most often performed in addition to a
general analysis), whereas we want to point out the following two:

Investigations concerning asymmetries in the CMB data were accomplished with linear
[121, 125, 134, 129, 131, 132, 136] as well as non-linear methods [121, 122, 126, 127, 124,
128, 133, 239]. With those methods, studies of the differences between the northern and
southern hemisphere of the galactic coordinate system, naturally given by the absent region
of the outmasked galactic plane, as well as a search for a preferred direction of maximum
asymmetry were performed. In almost all investigations, significant asymmetries between
the north and the south were detected. Thereby, it depended on the type of analysis, which
hemisphere featured the larger deviations from Gaussianity and which hemisphere agreed
better with the standard model. The preferred direction of maximal disparity was in most
investigations found to lie close to the ecliptic axis.

Local features are another particular form of non-Gaussianity being of growing impor-
tance, e.g. for the search of topological defects like cosmic strings. Since the first detection
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of the famous cold spot by [127], many investigations tried to find new, or re-detect known
spots with various methods [77, 78, 133, 140, 141, 142, 145, 146, 147, 148, 149]. In doing
so, several significant spots have been detected up to now.

In [130], all mentioned investigations were accomplished by applying, for the first time,
the scaling index method on the WMAP 3-year data. In this paper, we continue these anal-
yses by applying the scaling index method on the WMAP 5-year observations. We search
for global non-Gaussianities and asymmetries in the data and use a modified approach to
detect local features.

This paper is structured as follows: In Section 4.2 we present the preprocessing of the
WMAP data and the modality of creating the simulations. In Section 4.3, the scaling index
method is introduced as well as a technique to cope with boundary effects. With these
requisites, we are ready to perform our calculations, whose results are presented in Section
4.4. In this chapter, we first discuss the global investigations as well as asymmetries and
focus on local features later on. All these findings are summarised in Section 4.5. Finally,
we draw our conclusions in Section 4.6.

4.2 WMAP Data and Simulations

For our investigations we use the Q-, V- and W-band five-year-data of the WMAP-satellite
as it is provided by the WMAP-Team1. We work with the foreground-reduced maps, which
use the Foreground Template Model proposed in [224] and [225] for foreground reduction.
To obtain a co-added VW-map as well as single V-, W- and Q-maps, we accumulate the
differencing assemblies Q1, Q2, V1, V2, W1, W2, W3, W4 via a noise-weighted sum [41]:

T (θ, φ) =

�
i∈A Ti(θ, φ)/σ2

0,i�
i∈A 1/σ2

0,i

(4.1)

In this equation, A characterises the set of required assemblies, e.g. for the co-added
VW-map A = {V 1, V 2, W1, W2, W3, W4}. The parameters θ and φ correspond to the
co-latitude and the longitude on the sphere, while the five-year noise per observation of
the different assemblies, given by [233], is denoted by σ0.

We decrease the resolution of the maps to 786432 pixels, which equals to Nside = 256
in the employed HEALPix-software2 [211] and cut out the heavily foreground-affected
parts of the sky using the KQ75-mask [231], which has to be downgraded as well. We
choose a conservative downgrading of the mask by taking only all pixels at Nside = 256
that do completely consist of non-mask-pixels at Nside = 512. All downgraded pixels at
Nside = 256, for which one or more pixels at Nside = 512 belonged to the KQ75-mask, are
considered to be part of the downgraded mask as well. In doing so, 28.4% of the sky is
removed (see upper left part of figure 4.1). Finally, we remove the residual monopol and
dipol by means of the appropriate HEALPix routine applied to the unmasked pixels only.

1http://lambda.gsfc.nasa.gov
2http://healpix.jpl.nasa.gov
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Figure 4.1: The two plots on the left hand side illustrate the original 5-year WMAP-map
of the co-added VW-band (above) and the related colour-coded α-response (below). The
equivalent plots for the mask-filling technique are arranged on the right hand side. These
maps (and all following ones) are shown in a conventional scheme, namely the Mollweide
projection in the Galactic reference frame with the Galactic Centre at the centre of the
image and the longitude increasing from there to the left-hand side.

To accomplish a test of non-Gaussianity, we also need simulations of Gaussian random
fields. We create 1000 simulations for every band and proceed hereby as follows: We take
the best fit ΛCDM power spectrum Cl, derived from the WMAP 5-year data only, and
the respective window function for each differencing assembly (Q1-Q2, V1-V2, W1-W4),
as again made available on the LAMBDA-website1. With these requisites, we can create
Gaussian random fields mimicing the Gaussian properties of the best fit ΛCDM -model
and including the WMAP-specific beam properties by convolving the Cls with the window
function. For every assembly, we add Gaussian noise to these maps with a particular
variance for every pixel of the sphere. This variance depends on the number of observations
Ni(θ, φ) in the respective direction and the noise dispersion per observation, σ0,i. After
this procedure, we summarize the Q-, V- and W-bands and the co-added VW-band using
equation (4.1), decrease the resolution to Nside = 256, cut out the KQ75-mask and remove
the residual monopol and dipol, just as we did with the WMAP-data.
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Radius 0.025 0.050 0.075 0.100 0.125
[�1, �2] [83,387] [41,193] [28,129] [21,97] [17,77]
Radius 0.150 0.175 0.200 0.225 0.250
[�1, �2] [14,65] [12,55] [10,48] [9,43] [8,39]

Table 4.1: The angular scales corresponding to the position of the 90% (�1) and the 10%
(�2) weighting in the scaling index formula when using a given scale parameter r.

4.3 Weighted Scaling Index Method

4.3.1 Formalism

We perform our investigations using the scaling index method (SIM) [163, 164], which
enables a characterisation of the structure of a given data set. It has already been used in
time series analysis of active galactic nuclei (AGN) [181, 182] as well as in structure analysis
for 2D and 3D image data, e.g. in [178, 237, 179]. In the following, we only present a short
overview of the calculation of scaling indices. For a more detailed formalism of using the
SIM in CMB analysis we refer to [130].

The fluctuations of the temperature maps are characterized by the values of the pixelised
sky of a sphere with radius R. We transform this representation to variations in the
radial direction around the sphere by applying a jitter depending on the intensity of the
fluctuation. Thereby we obtain a point-distribution in the three-dimensional space. Thus,
given Npix as the number of pixels on the sphere, the value of every pixel (θi, φi), i =
1, ..., Npix corresponds to a vector �pi in the three-dimensional space. We then define for
every point �pi its scaling index by

α(�pi, r) =

�Npix

j=1 2
�

dij

r

�2
e
−

“
dij
r

”2

�Npix

j=1 e
−

“
dij
r

”2 (4.2)

where dij denotes the euclidian distance measure

dij = ��pi − �pj�2

between the points �pi and �pj, while r characterizes a scale parameter. This parameter does
not draw a clear-cut line between the pixels that are included in the calculations and those
that are excluded; it rather influences how each single pixel is taken into consideration
for the calculation, in relation to its distance from the centre pixel: For lower r, only the
closest pixels are important in the calculation of α(�pi, r), whereas for larger r, the farther
distant pixels are considered as well, even though with a still lower weight than the close
pixels. In our study, we use the ten scales ri = 0.025, 0.05, ..., 0.25, i = 1, 2, ..., 10 and the
radius R = 2 for the sphere. Table 4.1 shows for each radius r the corresponding angular
scales at the position of the 90% and the 10% weighting, thus giving an estimate on how
the r-values relate to �-bands in Fourier space.
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The value of α characterises the structural components of a point distribution. For
example, points in a cluster-like, filamentary or sheet-like structure lead to α ≈ 0, α ≈ 1
or α ≈ 2, respectively. A uniform distribution of points results in α ≈ 3, while points in
underdense regions in the vicinity of point-like structures, laments or walls have α > 3.

On the basis of these scale-dependent α-values, we compute simple measures such
as moments and empirical probability distributions. We make use of the following scale-
dependent statistics, namely the mean, the standard deviation and a diagonal χ

2-statistics,
to compare the results of the original WMAP data with the results of the simulations:

�α(rk)� =
1

N

N�

j=1

α(�pj, rk) (4.3)

σα(rk) =

�
1

N − 1

N�

j=1

[α(�pj, rk)− �α(rk)�]2
�1/2

(4.4)

χ
2
α(rk) =

2�

i=1

�
Mi(rk)− �Mi(rk)�

σMi(rk)

�2

(4.5)

where M1(rk) = �α(rk)�, M2(rk) = σα(rk) and N denotes the number of pixels in consid-
eration. For all analyses we will only consider the non-masked pixels of the full sky or
of (rotated) hemispheres, as it will be outlined in Section 4.4.1. Note that we follow the
reasoning of [122] and choose a diagonal and not the full χ

2-statistics involving the inverted
cross-correlation matrix, because also in our case the moments are highly correlated leading
to high values in the off-diagonal elements of the cross-correlation matrix. Therefore, the
matrix would converge very slowly and numerical stability would not be given. If however
the chosen model is a proper description of the data, any combination of measures should
yield statistically the same values for the observations and the simulations.

To obtain scale-independent variables as well, we also use three diagonal χ
2-statistics,

derived from �α� and σα, which sum over all utilised length scales r:

χ
2
�α� =

Nr�

k=1

�
M1(rk)− �M1(rk)�

σM1(rk)

�2

(4.6)

χ
2
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�2

(4.7)
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2
�α�,σα
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Mi(rk)− �Mi(rk)�

σMi(rk)

�2

(4.8)

Hereby denotes M1(rk) = �α(rk)� and M2(rk) = σα(rk). The number of different scale
parameters r is named Nr. Throughout all subsequent investigations, Nr equals ten.

Finally, to be able to access the degree of difference between the data and the simu-
lations and hence a degree of the non-Gaussianity of the data, we use the σ-normalised
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Figure 4.2: A slice of the three-dimensional representation of the VW-band WMAP data,
illustrated as a x,z-projection of all points with |y| < 0.05. The plot on the left illustrates
the original, the one on the right the mask-filling method. The black circles indicate the
scaling range r = 0.2.

deviation of the WMAP results of the above-mentioned statistics:

S =
M − �M�

σM

(4.9)

where in this case M refers to one of the variables defined in equation (4.3) to (4.8)
respectively. M itself is calculated by using the WMAP data, while its moments result
from the simulations. Note that we pass on the absolute value in this general definition to
obtain positive as well as negative deviation. Although we will use the absolute value in
the global investigations, the sectioning into positive and negative deviation is useful for
the analysis of north-south asymmetry by means of rotated hemispheres in chapter 4.4.1.
It also allows a better interpretation of the character of difference, since e.g. a higher mean
of the scaling indices implies a more ’unstructured’ arrangement of the ’pixel cloud’ and
vice versa. Similarly, a higher standard deviation of the indices indicates a larger structural
variability.

In the tables, we also included the fraction p of the simulations that have higher (lower)
values than the data in terms of the respective calculated statistics. This percentage
corresponds to a empirical significance level of the null hypothesis that the observation
belongs to a Gaussian Monte Carlo ensemble.
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4.3.2 Coping with boundary effects

The regions in the direction of the galactic plane as well as many small spots all over the
WMAP map are masked out since they represent heavily foreground-affected areas which
would not allow a reasonable analysis of the intrinsic background fluctuations. But this
operation spoils the results of the scaling index method: Instead of a more or less uniform
distribution, the α-values in the regions around the mask now detect a sharp boundary
with no points in the masked area, into which the scaling regions extends (see figure 4.2).
This results in lower values of α. The effect can clearly be seen in the α-response of the
masked VW-band WMAP-data in the lower left corner of figure 4.1. A solution to this
problem is to fill the masked areas with suitable values, that prevent the low outcome at
the edges of the mask. We accomplish this by filling in (nearly) white Gaussian noise with
adjusted parameters. This is performed by applying the following two steps:

At first, we fill the masked regions with Gaussian noise, whose standard deviation for
each pixel corresponds to the pixel noise made available on the LAMBDA-website3:

T
∗
mask

(θ, φ) ∼ N (0, σ2
(θ,φ))

Here, σ(θ,φ) denotes the pixel noise of the pixel which is located in the direction (θ, φ).
Then, we scale the expectation value and the variance as a whole to the empirical mean
µrem and variance σ

2
rem

of the remaining regions of the original temperature map:

Tmask(θ, φ) =
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where R and M stand for the non-masked and masked region of the map respectively, and
NR as well as NM denote their number of pixels. Thus, we filled the mask with (nearly)
white Gaussian noise whose mean and standard deviation equal the respective terms of the
remaining map, whereby the spatial noise patterns are preserved.

With this filling technique, we obtain a complemented data set instead of just excluding
the masked regions. Figure 4.2 shows a slice of the three-dimensional representation of the
temperature fluctuations of both techniques, representing a 2D projection of the 3D point
distribution used for the calculation of the scaling indices. The centre region of the filled

3http://lambda.gsfc.nasa.gov
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sphere now highly resembles the appearance of the remaining area, although a more uniform
arrangement is visible. In the form of a mollweide projection, the filling method as well as
the corresponding α-response are displayed in the right column of figure 4.1.

The filling strategy shows obvious success in the adjustment of the scaling indices map
(see the lower right panel of figure 4.1): The white noise leads to higher values in the α-
response for the pixels close to the mask as compared to the masking method. The regions
around the edges of the mask feature now α-responses that match far better the values
of the remaining regions. Still these α-values are calculated with the help of an artificial
environment, but now the contortions are lower compared to the original approach. Since
we apply this method to both the original WMAP data as well as to the simulations, the
now smaller systematic errors in the α-calculation for the ’edge’-pixels are the same for
both kinds of maps. Thus any significant deviation found in the WMAP data is due to
intrinsic effects.

The most important advantage of the filling strategy arises if one considers local features
in the CMB map: For a search of local anomalies (e.g. cold spots), the filled map provides
a better underlying than the original map: In a point distribution, spots as well as points
at the border of the distribution show similarly low α-values. Thus, by cutting out the
mask, it is difficult to decide whether a detected local feature really exists or whether
it originates from a masked area nearby. But by using the filling technique, there is no
longer an edge between the masked and the non-masked regions, and anomalies in the
Gaussian noise of the mask are highly improbable. Thus, any detected local feature must
then originate from the data itself. Considering the amount of masked areas outside the
galactic plane, this technique describes a considerable improvement for the whole sky. Due
to these advantages we will only use the mask-filled maps in chapter 4.4.2.

4.4 Results

4.4.1 Band-wise and co-added map analysis

In figure 4.3, the empirical probability densities P (α) of the scaling indices (calculated
with r = 0.2) are displayed for the WMAP data and for the simulations, evaluated for the
original and the filling method from chapter 4.3.2. For clarity reasons we only used the
first 50 simulations in these plots. For both methods, a shift of the WMAP data to higher
values can be detected, that becomes particularly apparent in the northern hemisphere of
the galactic coordinate system. This indicates a more ’unstructured’ arrangement of the
underlying temperature fluctuations of the CMB data in comparison to the simulations. In
addition, the histograms of the simulations are slightly broader and therewith containing
a larger structural variability than the one of the WMAP data.

Comparing the non-filling and the filling method, the histograms of the latter feature
a higher maximum as well as higher values for large α, but lower probabilities for α ∈
[2.0, 2.5]. The obvious reason for this shift is the fact that the filled mask does not reduce
the α-values of its surroundings as it was the case with the former method. Now, the
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Figure 4.3: The probability distributions P (α) of the scaling indices for the WMAP data
(dark lines) and for 50 simulations (fainter lines) by using the scale parameter r = 0.2,
computed for the original (red) and the mask filling method (blue). The upper histogram
shows the distribution of the full sky data set, while the middle and the lower ones show
the distribution of the northern and southern hemisphere respectively.
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Figure 4.4: The histograms of the mean values �α(rk)� of the 1000 simulations for the five
different scale parameters r2, r4, r6, r8 and r10 (starting from upper left), calculated for
the full sky. The red lines denote the corresponding results of the WMAP data, while
the black and grey lines characterise the average over all simulations and the 1σ regions,
respectively.

outcome of these regions is influenced by the white noise and is therefore allocated at
higher values.

If we focus on the mean values �α(rk)� of the scaling indices, and compare the results of
the simulations with the WMAP data, the above mentioned shift to higher values becomes
yet clearer. This can be seen in Figure 4.4, where the distribution of �α(rk)� for the
simulations as well as the data is displayed for the five different scale parameters r2, r4,
r6, r8 and r10. These results were obtained using the full sky. For all applied scales, the
distance between the average over all simulations and the result of the original WMAP
map is notably similar. If we perform this analysis for the northern hemisphere only, the
deviations of the original data as compared to the simulations become significantly larger.

Both the shift to higher values of the WMAP data in comparison to the simulations as
well as its broader density are reflected in the σ-normalised deviations S(r) of the scale-
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Figure 4.5: The σ-normalised deviations S(r) of the statistics of the equations (4.3) -
(4.5) in absolute values for the VW-band, plotted as a function of the scale parameter r.
The lines with ”+” denote the mean, ”∗” the standard deviation and the boxes the χ

2-
combination, each for the original (red) and the mask filling method (blue). As in figure
4.3, the upper diagram shows the results of a full-sky analysis, while the middle and the
lower ones show the results when only concerning the northern or southern hemisphere
respectively.
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Figure 4.6: Same as figure 4.5 but applied to the Q- (red), V- (green) and W-band (blue).
Only the results of the mask-filling method are shown while the original method is left out.
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dependent statistics of the equations (4.3) - (4.5): The former is reflected in the mean
and the latter in the standard deviation (and therefore both aspects in the diagonal χ

2-
statistics). Figure 4.5 shows these deviations for the coadded VW-band as a function of
the scale parameter r for the original and the mask filling method, while figure 4.6 displays
only the latter method, but for the three single bands. As above, the results are illustrated
for the full sky as well as for the separate hemispheres. The shift to higher values of the
WMAP data in the northern hemisphere in figure 4.3 appears now as an increased S(r),
especially for higher scales (r ≥ 0.125), where the deviations of the two moments range
between 2σ and 3.5σ, and the χ

2-combination nearly reaches a 6σ-level. In the southern
hemisphere, only the lowest scales show a namable S(r). On larger scales, no signatures
for deviations from Gaussianity are identified. Looking at the single bands Q, V and W,
the overall qualitative behaviour of the images is quite similar, while the σ-normalised
deviations itself are slightly lower in most cases. A remarkable fact is the appearance of
the highest S(r) (5.2σ for the χ

2-combination in the northern hemisphere at r = 0.15)
in the frequency band which is considered to be the least foreground-contaminated one,
namely the V-band. Comparing the co-added VW-band of the original approach and of
the mask filling method, the σ-normalised deviations of the mean are almost identical. The
standard deviation of the latter method in comparison to the former one shows a slightly
lower S(r) for higher scales, which is also reflected in the graph of the χ

2-combination, yet
the profile remains the same.

We also calculated the σ-normalised deviations S and the percentages p of the simu-
lations with higher (lower) results of the scale-independent diagonal χ

2-statistics from the
equations (4.6) to (4.8), which are listed in table 4.2. Although the results are damped
by a few unimportant scales, high deviations are still found, particularly in the northern
hemisphere. For a better comparison to separate scale lengths, the respective results of
the scale-dependent statistics (4.3) to (4.5) are listed in table 4.3, for which we used the
single scale r = 0.2.

In general, all occurring characteristics of the figures 4.3 and 4.5 match the findings of
the analysis of the WMAP 3-year data in [130]. This indicates that the results are not
based on some time-dependent effects. Since the 5-year data features lower error bars than
the 3-year data, it is also improbable that both results are induced by noise effects only.

Evidence for north-south asymmetry in the WMAP data was already detected using the
angular power spectrum [125, 134] and higher order correlation functions [121], spherical
wavelets [127], local curvature analysis [124], two-dimensional genus measurements [126] as
well as all three Minkowski functionals [122], correlated component analysis [129], spherical
needlets [133], frequentist analysis of the bispectrum [128], two-point correlation functions
[131, 132] and Bayesian analysis of the dipole modulated signal model [136]. To take a
closer look at asymmetries in the WMAP five-year data in our investigations, we perform
an analysis of rotated hemispheres, as it was done for the three-year data in [130]: For 3072
different angles, we rotate the original and simulated maps and then compute S(r) for the
above statistics (mean, standard deviation and χ

2-combination) by only using the data in
the resulting new upper hemisphere. Thus, the colour of each pixel in the corresponding
figure 4.7 expresses the positive or negative σ-normalised deviation S(r) of the hemisphere
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Full Sky Northern Sky Southern Sky
χ

2
�α�: (S/%) (S/%) (S/%)

VW (original) 2.2 / 97.3 2.7 / 98.5 1.7 / 96.6
VW (mask-filled) 2.2 / 97.3 2.7 / 98.3 1.7 / 96.6
Q (mask-filled) 2.1 / 97.4 2.7 / 98.3 1.5 / 95.8
V (mask-filled) 2.0 / 97.4 2.6 / 98.1 1.5 / 96.2
W (mask-filled) 2.1 / 97.5 2.6 / 98.2 1.7 / 96.6
χ

2
σα

:

VW (original) 2.0 / 95.6 5.5 / 99.7 0.1 / 68.5
VW (mask-filled) 1.6 / 93.4 4.3 / 99.3 0.3 / 72.9
Q (mask-filled) 0.7 / 83.1 2.3 / 96.0 1.2 / 89.4
V (mask-filled) 1.2 / 90.5 4.0 / 98.9 0.6 / 79.2
W (mask-filled) 1.4 / 92.3 2.8 / 96.7 1.9 / 71.6
χ

2
�α�,σα

:

VW (original) 2.3 / 97.4 4.2 / 99.1 1.3 / 93.5
VW (mask-filled) 2.1 / 97.1 3.7 / 98.8 1.3 / 94.2
Q (mask-filled) 1.8 / 96.3 2.9 / 98.3 1.6 / 95.5
V (mask-filled) 1.9 / 96.6 3.5 / 98.8 1.3 / 94.1
W (mask-filled) 2.0 / 96.4 3.0 / 98.5 1.3 / 93.7

Table 4.2: The σ-normalised deviations S and the empirical probabilities p of the scale-
independent diagonal χ

2-statistics from the equations (4.6) to (4.8) for the different bands
and methods as well as for the Full Sky and the single hemispheres.

around that pixel in the WMAP-data compared to the hemispheres around that pixel
in the simulations. We apply this analysis for the co-added VW-band as well as for the
single bands, whereas for the VW-band we use both the original and the mask filling
method, but for the single bands the filling method only. In all charts of figure 4.7 we
can detect an obvious asymmetry in the data: The largest deviations between the data
and the simulations are exclusively obtained for rotations pointing to northern directions
relative to the galactic coordinate system. The maximum value for S(r) of the χ

2 analysis
(right column of figure 4.7) using the mask-filling method on the co-added VW-band is
obtained in the reference frame pointing to (θ, φ) = (27◦, 35◦), which is close to the galactic
north pole. This proximity to the pole is consistent to the results of [124] and [130], as
well as to those findings of [125] and [121] that considers large angular scales. For the
standard deviation (central column of figure 4.7), the northern and southern hemispheres
offer different algebraic signs. The negative S(r) of the north implies a lower variability
than the simulations in this region, while the south shows a converse behaviour. The fact
that the plots using the new method show slightly lower values for S(r) than the ones using
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Full Sky Northern Sky Southern Sky
�α(0.2)�: (S/%) (S/%) (S/%)

VW (original) 2.3 / 99.7 2.7 / 99.8 1.7 / 97.1
VW (mask-filled) 2.3 / 99.7 2.3 / 98.7 1.7 / 97.6
Q (mask-filled) 2.2 / 99.6 2.6 / 99.8 1.6 / 96.6
V (mask-filled) 2.2 / 99.6 2.6 / 99.8 1.7 / 97.2
W (mask-filled) 2.2 / 99.6 2.6 / 99.8 1.8 / 98.2
σα(0.2):

VW (original) 1.3 / 90.7 2.7 / 99.8 0.5 / 68.9
VW (mask-filled) 1.1 / 85.6 4.3 / 99.3 0.6 / 69.8
Q (mask-filled) 0.4 / 64.2 1.7 / 95.6 1.1 / 85.8
V (mask-filled) 1.1 / 84.9 2.4 / 99.0 0.6 / 71.4
W (mask-filled) 1.0 / 83.9 1.9 / 96.4 0.2 / 55.9
χ

2
α(0.2):

VW (original) 1.8 / 95.3 5.2 / 99.4 0.5 / 81.6
VW (mask-filled) 1.7 / 94.5 4.4 / 99.1 0.6 / 82.6
Q (mask-filled) 1.2 / 90.9 3.4 / 98.6 0.8 / 97.1
V (mask-filled) 1.6 / 94.2 4.2 / 99.2 0.5 / 81.9
W (mask-filled) 1.5 / 93.7 3.3 / 98.6 0.5 / 81.0

Table 4.3: Same as table 4.2, but for the scale-dependent statistics from the equations
(4.3) to (4.5) for the single scale r = 0.2.

the old method may be explained by the fraction of pure noise values within every rotated
hemisphere, that diminish the degree of difference between the data and the simulations.

Another remarkable feature of figure 4.7 is the high correlation between the different
bands, that is visible to the naked eye but also confirmed mathematically: By calculating
correlations c among all combinations of those bands where the mask filling method was
applied, we obtain for the mean c ≥ 0.99 and for the standard deviation as well as the
χ

2-statistics c ≥ 0.95. While the Q-band is heavily foreground-affected, first of all by syn-
chrotron radiation as well as radiation from electron-ion scattering (”free-free emission”),
the W-band is mainly distorted by Dust emission. The V-band is affected by all these
foregrounds, even though less than the other bands. As mentioned in chapter 4.2, we use
the foreground-reduced maps in our analysis, but one could still expect some small interfer-
ences. Despite the different influences on the different bands, we obtain the same signatures
of non-Gaussianity in all single bands as well as in the co-added VW-band. Therefore we
conclude that the measured asymmetry is very unlikely the result of a foreground influence
but has to be concluded of thermal origin.
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Figure 4.7: The σ-normalised deviations S(r) of the rotated hemispheres at the scale
parameter r = 0.2 for the mean (left column), the standard deviation (central column)
and the diagonal χ

2-statistics (right column) for the co-added VW-Band without (top
row) and with (second row) the appliance of the mask filling method, as well as for the
single Q-, V- and W-bands (third to fifth row), for which the mask filling method was
always applied. Notice the different colour scaling for each plot.
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4.4.2 Local features

An interesting anomaly in the CMB data is that there are small regions which show very
high or very low values in some local structure analysis. Vielva et al. (2004) detected the
first of these regions, the well-known cold spot at (θ, φ) = (147◦, 209◦) a few years ago by
using a wavelet analysis. This Spot was re-detected several times using amongst others
wavelet analysis [140, 141, 142, 145], scaling indices [130] or the Kolmogorov stochasticity
parameter [77]. Furthermore, there have been some investigations which, in addition to
the re-detection of the first spot, detected secondary spots via directional [146, 147, 148] or
steerable wavelets [149], needlets [133] and again the Kolmogorov stochasticity parameter
[78]. These spots could be the result of some yet not fully understood physical process. For
the cold spot lots of theories already exist which try to explain its origin by second-order
gravitational effects [241, 242], a finite universe model [227], large dust-filled voids [75, 234,
240, 232], cosmic textures [144], non-Gaussian modulation [238], topological defects [228],
textures in a brane world model [229] or an asymptotically flat Lematre-Tolman-Bondi
model [230, 79].

For our investigations concerning spots in the WMAP data we only use the mask-filling
method of chapter 4.3.2 due to the reasons already explained above. We extend the analysis
of scaling indices by applying two different approaches to detect anomalies: The first one is
to calculate the σ-normalised deviation of every pixel on the α-response of the CMB map.
For a given scale parameter r, this is achieved by comparing the scaling index α(�pi, r)
of each vector �pi, i = 1, ..., Npix, of the original data with the mean of the corresponding
values α�(�pi, r), � = 1, ..., Nsim, of the simulations depending on their standard deviation,
where Nsim denotes the number of the simulations. Formally, this reads as:

Si,r =
α(�pi, r)− µi,r

σi,r

, (4.10)

with

µi,r =
1

Nsim

Nsim�

�=1

α�(�pi, r)

σ
2
i,r

=
1

Nsim − 1

Nsim�

�=1

(α�(�pi, r)− µi,r)
2

The results are illustrated in the upper left part of figure 4.8.
The second approach smoothes the α-maps of the original and simulated data by com-

puting for every pixel the mean value of its surroundings given by some specified maximum
distance, which equals 3◦ in our analysis. We apply the pixel-wise deviations Si,r again
on the resulting maps. The outcome of this procedure is shown in the upper right part
of figure 4.8. In the lower left plot of the same figure only the deviations Si,r ≤ −3.0 are
illustrated to gain yet another clearer view on the interesting areas.

The first approach clearly shows the cold spot and indicates some secondary spots in
the southern as well as in the northern hemisphere. These get confirmed in the plot of the
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Figure 4.8: The pixel-wise deviations Si,r of the primal (upper left) and of the smoothed
scaling indices map (upper right), both based on the VW-band and the scale parameter
r = 0.2. The plot in the lower left only shows the values ≤ −3.0 of the smoothed method.
Except for the very small spots in the right part of this mapping, these regions are added
to the KQ75-mask. The result is illustrated in the lower right plot.

smoothing method, where we obtain a deviation of up to −7σ for several clearly visible
areas: In the southern hemisphere we detect a cold spot at (θ, φ) = (124◦, 320◦) and
another one at (θ, φ) = (124◦, 78◦). Both were already detected with the above mentioned
directional and steerable wavelet as well as with a needlet analysis. The former one is a
hot spot in these investigations. In our analysis, the latter spot actually appears as two
spots close to each other, which is in agreement with [133]. We discover another southern
cold spot at (θ, φ) = (120◦, 155◦) which is very close to the mask. This spot represents a
good example for the use of the mask filling method since it is situated at the edge of the
non-masked region: The influence of the mask is diminishing the results of the calculation
of the scaling indices in the area of this spot. This becomes obvious if one recalls the lower
left plot of figure 4.1, in which the coordinates of the spot would be completely located in
a ”blue” region with low α-values. Since the results of the scaling indices of local features
show a similar, namely lower-valued, behaviour, an overlapping like that could prevent the
detection of such spots close to the mask. By using the mask filling method, the detection
of this cold spot on the edge of the mask is equivalent to a detection in an unmasked region,
and therefore reliable. The spot at (θ, φ) = (136◦, 173◦), described by [146] and [133], is
not traced in our analysis. In the northern hemisphere, our investigation shows two other
cold spots at (θ, φ) = (49◦, 245◦) and (θ, φ) = (68◦, 204◦), which do not correspond with the
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Figure 4.9: The σ-normalised deviations of the mask-filling method for the original KQ75-
mask (blue) and for the modified mask of the previous figure (green) in absolute values,
plotted as a function of the scale parameter, whereby as above ”+” denotes the mean, ”∗”
the standard deviation and the boxes the χ

2-combination. The full sky as well as again
the single hemispheres are considered. The blue lines exactly correspond to the blue lines
of figure 4.5.
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Figure 4.10: Same as figure 4.9 but exclusive for the modified mask of figure 4.8 applied
to the Q- (red), V- (green) and W-band (blue). This plot is associated with figure 4.6.
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so-called northern cold spot of [78], but with the results of [146], where again one of them
is a hot spot. Also [133] locates one of these two spots. All these results were achieved
with an analysis of the VW-band, but we find similar results in a single band analysis.

It is possible to define a new coordinate frame, including a new direction of the ”north
pole”, such that all of these spots are contained in the ”southern” hemisphere. This new
north pole would then be located at (θ, φ) = (51◦, 21◦).

If the considered spots really depend on some yet not completely understood, maybe
secondary, physical effect, they should not be implemented in a testing for intrinsic non-
Gaussianity. For this reason, we modify the KQ75-mask by additionally excluding all above
mentioned spots. A small peculiarity at the edge of the mask next to the cold spot as well
as three very small blurs in the right half of the lower left mollweide projection in figure 4.8
are not considered, since we regard their appearance as insufficient for being a distinctive
feature. The modification of the KQ75-mask is illustrated in the lower right part of figure
4.8.

We now apply this new mask to the α-response of both the WMAP data as well as
the simulations and repeat the analysis of chapter 4.4.1. The results are illustrated in
the figures 4.9 and 4.10 as well as in table 4.4. A clear increase of S(r) in comparison to
the former analysis is evident. This heightening is in particular present in the southern
hemisphere, where we detected more local features than in the north. The largest increase
takes place in the co-added VW-band, where we now reach deviations of up to 4.0 for the
χ

2-combination in a full-sky analysis (former maximum: 2.9) and to the extend of 6.0 in an
analysis of the northern hemisphere (former maximum: 5.5). But also the single bands in
figure 4.10 as well as all scale-independent diagonal χ

2-statistics in table 4.4 show without
exception a greater evidence for non-Gaussianity.

One could have expected to obtain higher values for S(r) since the α-response of the
WMAP data in comparison to the one of the simulations featured a shift to higher values
(see figure 4.3): By now cutting out the local features, that exclusively consist of cold

spots in terms of pixel-wise deviations, one excludes spots that showed lower values than
the average of the simulations (see equation 4.10). Therefore, the shift to higher values
becomes even larger, hence leading to a higher S(r). Still, the exclusion of the spots is
helpful and necessary, since these local anomalies could origin in some independend physical
process, as mentioned above.

4.5 Summary

We performed a scaling index analysis of the WMAP 5-year data following up the investi-
gations of [130]. For more realistic results around the mask, we additionally implemented
a mask-filling method. By comparing the Q-, V-, W- and the co-added VW-band of the
WMAP data with 1000 simulated maps per band, we (re)detected strong deviations from
Gaussianity as well as asymmetries in the data, which can be summarized and interpreted
as follows:

The scaling index values of the WMAP data are shifted to higher values and feature a
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Full Sky Northern Sky Southern Sky
χ

2
�α�: (S/%) (S/%) (S/%)

VW (mask-filled) 2.4 / 97.6 2.8 / 98.4 2.0 / 97.2
Q (mask-filled) 2.3 / 97.5 2.8 / 98.3 1.8 / 96.9
V (mask-filled) 2.3 / 97.6 2.7 / 98.1 1.9 / 97.1
W (mask-filled) 2.4 / 97.7 2.6 / 98.2 2.0 / 97.4
χ

2
σα

:

VW (mask-filled) 2.6 / 96.7 4.8 / 99.8 0.2 / 97.2
Q (mask-filled) 1.3 / 90.6 2.5 / 97.0 0.6 / 82.1
V (mask-filled) 2.0 / 94.9 4.4 / 99.4 0.4 / 74.1
W (mask-filled) 2.2 / 96.2 3.1 / 98.0 0.4 / 78.9
χ

2
�α�,σα

:

VW (mask-filled) 2.7 / 98.0 4.0 / 99.1 1.6 / 96.2
Q (mask-filled) 2.2 / 97.1 3.0 / 98.6 1.6 / 95.6
V (mask-filled) 2.4 / 97.3 3.7 / 98.9 1.5 / 95.3
W (mask-filled) 2.5 / 97.9 3.2 / 98.7 1.6 / 95.5

Table 4.4: Same as table 4.2, but after excluding the cold spots via the modified KQ75-
mask.

higher variability than those of the simulations, especially in the northern hemisphere. This
effect can be interpreted as less structure as well as more structural variations in the CMB
signal compared to the corresponding Gaussian model. The results are confirmed by several
statistics, that show deviations from Gaussianity of up to 5.9σ in the scale-dependent, and
5.5σ in the scale-independent case. These results are slightly lower applying the mask-filling
method, and show high similarities within the different bands. In addition, we detected
strong asymmetries by performing an analysis of rotated hemispheres: rotations pointing
to northern directions show by far higher deviations from Gaussianity for the mean and
the χ

2-analysis than rotations pointing to the south. Observing the standard deviation,
we obtained a negative outcome in the north and a positive in the south. This implies that
the north possesses a more consistent pattern than the simulations, while the south shows
the converse behaviour. This feature is in line with later investigations of local features,
where we detected more local anomalies in the southern than in the northern hemisphere.

Furthermore, we performed an analysis of local features by studying pixel-wise devi-
ations from Gaussianity with and without a previous smoothing of the α-responses. For
these investigations, we exclusively applied the mask filling method which can reduce the
distorting effects on measurements like the scaling indices that appear when cutting out
the masked regions. This mask-filling method eliminates the diluting effects on the border
and therefore allows for an analysis of local features, which show a similar behaviour of
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lower outcome in the scaling index method. We detected the well-known cold spot and
three additional spots in the southern as well as two spots in the northern hemisphere.
Except for one single spot in the south, all findings are in agreement with former results of
different investigations. Since these spots could origin on some yet not completely under-
stood physical effect, we excluded them from the data set and repeated the former analysis.
Instead of obtaining lower deviations, the results show an increase of non-Gaussianity in all
bands. Therefore, the discovered local anomalies are not the reason of the global detection
of non-Gaussianity, but were actually dampening the deviations on average. In former
isotropic wavelet-based analyses, an exclusion of detected spots lessened the significance
level of indications of non-Gaussianity [127]. Our new findings indicate in contrast, that
the isotropic scaling index method can detect several different yet complementary aspects
of the structural composition of the underlying data. The results of our investigation are in
agreement with the steerable wavelet-based analysis in [243], where the non-Gaussianites
were conserved after excluding the detected local anomalies.

4.6 Conclusions

The redetection of indications for non-Gaussianity of the WMAP 3-year data analysis leads
to the conclusion that the observed results are not time-depending. In contrary, we can
detect even higher deviations from the simulations which mimic the Gaussian properties of
the best fit ΛCDM -model. Therefore, it is highly improbable for the results to be caused
by effects related to short-term measurements.

In addition, the coherence between the different analysed bands implies that the fore-
ground influence plays only a minor role but that the results are very unlikely to be truly
of thermal origin.

Finally, the agreement of the detected spots with former investigations confirms the
existence of these local anomalies.

The two most important tasks for future studies are: First, to identify possible reasons
for the indications of non-Gaussianity, which could be possible with the attainment of more
and more precise data, e.g. with the upcoming PLANCK-mission. Second, to figure out
possible sources of the observed local features and thereby solving the question, if these
anomalies are due to systematics or foreground effects or indeed represent variations in the
CMB signal itself.



Chapter 5

Surrogates and Scaling Indices
applied to the WMAP 7-year data

Original publication: C. Räth, G. E. Morfill, G. Rossmanith, A. J. Banday, K. M.
Górski, A model-independent test for scale-dependent non-Gaussianities in the cosmic mi-

crowave background, PRL, 102, 131301 (2009).

Abstract: We present a model-independent method to test for scale-dependent non-
Gaussianities in combination with scaling indices as test statistics. Therefore, surrogate
data sets are generated, in which the power spectrum of the original data is preserved,
while the higher order correlations are partly randomised by applying a scale-dependent
shuffling procedure to the Fourier phases. We apply this method to the WMAP data of the
cosmic microwave background (CMB) and find signatures for non-Gaussianities on large
scales. Further tests are required to elucidate the origin of the detected anomalies.

Inflationary models of the very early universe have proved to be in very good agreement
with the observations of the linear correlations of the cosmic microwave background (CMB).
While the simplest, single field, slow-roll inflation [23, 24, 25] predicts that the temperature
fluctuations of the CMB correspond to a (nearly) Gaussian, homogeneous and isotropic ran-
dom field, more complex models may give rise to non-Gaussianity [58, 59, 63, 36]. Models
in which the Lagrangian is a general function of the inflaton and powers of its first deriva-
tive [69, 70] can lead to scale-dependent non-Gaussianities, if the sound speed varies during
inflation. Similarily, string theory models that give rise to large non-Gaussianity have a
natural scale dependence [236]. If the scale dependence of non-Gaussian signatures plays
an important role in theory, the conventional (global) parametrisation of non-Gaussianity
via fNL is no longer sufficient to describe the level of non-Gaussianity and to discriminate
between different models. fNL must at least become scale dependent - if this parametrisa-
tion is sufficient at all. But first of all such scale-dependent signatures have to be identified.
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Figure 5.1: ILC map after remapping of the temperatures and phases (left). First order
(middle) and respective second order surrogate (right) for lcut = 20. Note the resemblance
of the first order surrogate with the ILC map at large scales

Possible deviations from Gaussianity have been investigated in studies based on e.g. the
WMAP data of the CMB (see [235] and references therein) and claims for the detection of
non-Gaussianities and other anomalies (see e.g. [126, 122, 125, 244, 123, 105, 130, 148, 245])
have been made. These studies have in common that the level of non-Gaussianity is as-
sessed by comparing the results for the measured data with a set of simulated CMB-maps
which were generated on the basis of the standard cosmological model and/or specific as-
sumptions about the nature of the non-Gaussianities.
On the other hand, it is possible to develop model-independent tests for higher order corre-
lations (HOCs) by applying the ideas of constrained randomisation [246, 163, 164], which
have been developed in the field of nonlinear time series analysis [157]. The basic formalism
is to compute statistics sensitive to HOCs for the original data set and for an ensemble of
surrogate data sets, which mimic the linear properties of the original data. If the computed
measure for the original data is significantly different from the values obtained for the set
of surrogates, one can infer that the data contain HOCs.
Based on these ideas we present in this Letter a new method for generating surrogates
allowing for probing scale-dependent non-Gaussianities.

Our study is based on the WMAP data of the CMB. Since our method in its present
form requires full sky coverage to ensure the orthogonality of the set of basis functions
Ylm we used the five-year ”foreground-cleaned” Internal Linear Combination (ILC) map
(WMAP5) [231] generated and provided1 by the WMAP-team. For comparison we also in-
cluded the maps produced by Tegmark et al. [104, 247], namely the three year cleaned map
(TOHc3) and the Wiener-filtered cleaned map (TOHw3)2, which were generated pursuing
a different approach for foreground cleaning. Since the Gaussianity of the temperature
distribution and the randomness of the set of Fourier phases are a necessary prerequisite
for the application of our method we performed the following preprocessing steps. First,
the maps were remapped onto a Gaussian distribution in a rank-ordered way. By applying
this remapping we automatically focus on HOCs induced by the spatial correlations in the
data while excluding any effects coming from deviations of the temperature distribution
from a Gaussian one.

1http://lambda.gsfc.nasa.gov/
2http://space.mit.edu/home/tegmark/wmap.html
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Figure 5.2: Deviation S as derived from rotated upper hemispheres for σT (left) and �α(r10)�
(right) for the WMAP5 map and lcut = 20. The z-axis of the respective rotated reference
frame pierces the centre of the respective colour-coded pixel. 768 rotated hemispheres,
which correspond to number of coloured pixels, were considered. (For a more detailed
description of this visualisation technique see e.g. [125, 130]).

To ensure the randomness of the set of Fourier phases we performed a rank-ordered remap-
ping of the phases onto a set of uniformly distributed ones followed by an inverse Fourier
transformation. These two preprocessing steps result in minimal changes to the ILC map
(the maps remain highly correlated with cross-correlations c > 0.95). The main effect is
the removal of significant outliers in the temperature distribution.

To test for scale-dependent non-Gaussianities in a model-independent way we propose
the following two-step procedure. Without loss of generality we restrict the description of
the method and all subsequent analyses to the case of non-Gaussianities on large scales.
Consider a CMB map T (θ, φ), where T (θ, φ) is Gaussian distributed and calculate its
Fourier transform. The complex valued Fourier coefficients alm, alm =

�
dΩnT (n)Y ∗

lm
(n)

can be written as alm = |alm|eiφlm with φlm = arctan (Im(alm)/Re(alm)). The linear or
Gaussian properties of the underlying random field are contained in the absolute values
|alm|, whereas all HOCs – if present – are encoded in the phases φlm and the correlations
among them. First, we generate a first order surrogate map, in which any phase correlations
for the scales, which are not of interest (here: the small scales), are randomised. This is
achieved by a random shuffle of the phases φlm for l > lcut, 0 < m ≤ l, where lcut =
10, 15, 20, 25, 30 in this Letter and by performing an inverse Fourier transformation (Fig.
5.1). Second, N (N = 500 for lcut = 20, N = 100 otherwise) realisations of second order
surrogate maps are generated for the first order surrogate map, in which the remaining
phases φlm with 1 < l ≤ lcut, 0 < m ≤ l are shuffled while the already randomised
phases for the small scales are preserved. Fig. 5.1 shows a realisation of a second order
surrogate map after inverse Fourier transformation. Note that the Gaussian properties
of the remapped ILC map, which are given by |alm|, are exactly preserved in all surrogate
maps. Finally, for calculating higher order statistics the maps were degraded to Nside = 256
and residual monopole and dipole contributions were subtracted. To compare the two
classes of surrogates, we calculate local statistics in the spatial domain, namely scaling
indices (SIM) as described in Räth et al. [130]. In brief, scaling indices estimate local
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Figure 5.3: Probability density P (α(r10)) for the surrogates of the WMAP5 (blue), TOHw3
(yellow) and TOHc3 (red) map for the rotated upper and lower hemisphere and lcut = 20.
The black lines denote the respective first order surrogate. The reference frame is chosen
such that the difference ∆S = Sup−Slow between the upper and lower hemisphere becomes
maximal for �α(r10)� regarding the WMAP5 surrogates.

scaling properties of a point set P . The spherical CMB data can be represented as a
three-dimensional point distribution P = �pi = (xi, yi, zi), i = 1, . . . , Npixels by transforming
the temperature fluctuations into a radial jitter. For each point �pi the local weighted

cumulative point distribution ρ is calculated ρ(�pi, r) =
�Npixels

j=1 e
−(

dij
r )2

, dij = ��pi − �pj�.
The weighted scaling indices α(�pi, r) are then obtained by calculating the logarithmic
derivative of ρ(�pi, r) with respect to r, α(�pi, r) = ∂ log ρ(�pi,r)

∂ log r
. For each pixel we calculated

scaling indices for ten different scales, r1 = 0.025,. . . ,r10 = 0.25 in the notation of [130]. For
each scale we calculate the mean (�α�) and standard deviation (σα) of the scaling indices
α(�pi, r) derived from a set of pixels belonging to rotated hemispheres or the full sky. To
investigate the correlations between the scaling indices and temperature fluctuations, we
also considered the standard deviation (σT ) for the mere temperature distribution of the
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respective sky regions.
The differences of the two classes of surrogates are quantified by the σ-normalised

deviation
S(Y ) = (Ysurro1 − �Ysurro2�)/σYsurro2 ,

Y = σT ,�α�,σα,χ2 (surro1: first order surrogate, surro2: second order surrogate) and the
significance levels SL = 1 − p, where p is the fraction of second order surrogates, which
have a higher (lower) Y than the first order surrogate. χ

2 denotes diagonal χ
2-statistics,

which we obtain by combining �α�,σα for a given scale ri, i.e.

χ
2(ri) =

2�

j=1

�
Xj(ri)− �Xj(ri)�

σXj(ri)

�2

,

with X1 = �α�, X2 = σα and �Xj�,σXj derived from the N realisations of second order
surrogates. As scale-independent measure we also consider χ

2 as obtained by summing
over the scales (Nr = 10),

χ
2 =

Nr�

i=1

j2�

j=j1

�
Xj(ri)− �Xj(ri)�

σXj(ri)

�2

,

for one single measure (j1 = 1, j2 = 1; j1 = 2, j2 = 2) and the two measures (j1 = 1, j2 = 2).
Fig. 5.2 shows S(σT ) and S(�α(r10)�) derived from pixels belonging to the respective
upper hemispheres for 768 rotated reference frames. Statistically significant signatures
for non-Gaussianity and ecliptic hemispherical asymmetries become immediately obvious,
whereby these signatures can solely be induced by large scale HOCs. Although S(σT ) and
S(�α(r10)�) are spatially highly (anti-)correlated (c = −0.95), the two effects are neverthe-
less complementary to each other in the sense that a systematically lower/higher σT would
lead to a lower/higher �α(r10)� and not to the observed higher/lower value for the first order
surrogate map. These systematically shifted scaling indices are a generic feature present in
all three maps (Fig. 5.3). Although the probability densities P (α(r10)) are different due to
the smoothing or Wiener-filtering for the three maps, the shifts of the first order surrogate
relative to its second order surrogates can be found in all three cases. We also cross-
correlated the deviation maps shown in Fig. 5.2 derived from the three input maps and
always obtained c ≥ 0.98 for the correlation coefficient. These systematic deviations lead
to significant detections of non-Gaussianities which are shown in Fig. 5.4 and summarised
for lcut = 20 in Tables 5.1-5.2. The most significant and most stable results are found for
�α� at larger radii, where for all three maps none of the 500 second order surrogates had
a higher (upper hemisphere) or lower (lower hemisphere) value than the respective first
order surrogate, leading to a significance level SL > 99.8 % for �α(r10)�. Also the combined
measure χ

2
�α� yields deviations S ranging from 5.2 up to 7.9, which represent one of the

most significant detection of non-Gaussianity in the WMAP data to date. We estimated
how varying lcut values affect the results and found that both the non-Gaussianities and
asymmetries are detected for all considered lcut, where the highest deviations are obtained
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Figure 5.4: Deviations |S(r)| for the rotated upper and lower hemisphere for �α� (black),
σα (blue) and a χ

2-combination of �α� and σα (red) (lcut = 20, N = 500). The solid
(dashed, dashed-dotted) lines denote the WMAP5 (TOHw3, TOHc3) map. The shaded
region indicates the 3σ significance interval. The insets show the results for �α(r10)�,
�α(r9)� and �α(r8)� (solid, dashed, dashed-dotted) as a function of lcut for the WMAP5
map (here: N = 100).
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Table 5.1: S/SL Upper Hemisphere

WMAP5 TOHc3 TOHw3
(S/SL) (S/SL) (S/SL)

σT -2.8/ 99.8 -3.0/>99.8 -2.9/ 99.8
�α(r10)� 3.5 / >99.8 3.5 / >99.8 3.6 / >99.8
χ

2
�α� 5.7 / 99.8 5.2 / 99.6 7.0 / >99.8

χ
2
σα

3.1 / 99.2 -0.7 / 74.4 2.1 / 95.4
χ

2
�α�,σα

6.1 / > 99.8 3.6 / 99.0 6.4 / > 99.8

Table 5.2: S/SL Lower Hemisphere

WMAP5 TOHc3 TOHw3
(S/SL) (S/SL) (S/SL)

σT 2.7/99.8 2.9/>99.8 2.8/99.8
�α(r10)� -3.9 / >99.8 -3.9 / >99.8 -3.7/>99.8
χ

2
�α� 7.9 />99.8 5.4/99.8 7.3/>99.8

χ
2
σα

-0.7 / 76.4 4.4 / 99.6 -0.6/67.0
χ

2
�α�,σα

5.8 / 99.8 6.3 />99.8 5.2/>99.8

for lcut = 20. Although S becomes considerably smaller for lcut = 10, we can still detect
the non-Gaussianities with SL > 99.0 %, which is larger than the results reported in [93]
(SL = 95 %), where also lcut = 10 was used. We performed the same analyses for the
coadded WMAP foreground template maps and for simulations using the best fit ΛCDM
power spectrum and WMAP-like noise and beam properties. We found in none of these
cases significant signatures as reported above. Details about these studies are deferred to
a longer forthcoming publication.

In conclusion, we demonstrated the feasibility to generate new classes of surrogate data
sets preserving the power spectrum and partly the information contained in the Fourier
phases, while all other HOCs are randomised. We found significant evidence for both
asymmetries and non-Gaussianities on large scales in the WMAP data of the CMB using
scaling indices as test statistics. The novel statistical test involving new classes of sur-
rogates allows for an unambigous relation of the signatures identified in real space with
scale-dependent HOCs, which are encoded in the respective Fourier phase correlations.
Our results, which are consistent with previous findings [126, 122, 125, 244, 123, 93, 130]
but also extend to smaller scales than those reported in [105] (lcut = 3) , [93] (lcut = 10)
and [245] (lcut ≤ 3), point towards a violation of statistical isotropy and Gaussianity. Such
features would disfavour canonical single-field slow-roll inflation – unless there is some
undiscovered systematic error in the collection or reduction of the CMB data or yet un-
known foreground contributions. Thus, at this stage it is too early to claim the detected
HOCs as cosmological and further tests are required to elucidate the true origin of the
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detected anomalies. Their existence in the three maps might, however, be suggestive.
In either case the proposed statistical method offers an efficient tool to develop model-
independent tests for scale-dependent non-Gaussianities. Due to the generality of this
technique it can be applied to any signal, for which the analysis of scale-dependent HOCs
is of interest.
Many of the results in this paper have been obtained using HEALPix [211]. We acknowl-
edge the use of LAMBDA. Support for LAMBDA is provided by the NASA Office of Space
Science.
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Abstract: We present a model-independent investigation of the Wilkinson Microwave

Anisotropy Probe (WMAP) data with respect to scale-independent and scale-dependent
non-Gaussianities (NGs). To this end, we employ the method of constrained randomisation.
For generating so-called surrogate maps a well-specified shuffling scheme is applied to the
Fourier phases of the original data, which allows to test for the presence of higher order
correlations (HOCs) also and especially on well-defined scales.
Using scaling indices as test statistics for the HOCs in the maps we find highly significant
signatures for non-Gaussianities when considering all scales. We test for NGs in four
different l−bands ∆l, namely in the bands ∆l = [2, 20], ∆l = [20, 60], ∆l = [60, 120]
and ∆l = [120, 300]. We find highly significant signatures for both non-Gaussianities and
ecliptic hemispherical asymmetries for the interval ∆l = [2, 20] covering the large scales.
We also obtain highly significant deviations from Gaussianity for the band ∆l = [120, 300].
The result for the full l-range can then easily be interpreted as a superposition of the
signatures found in the bands ∆l = [2, 20] and ∆l = [120, 300]. We find remarkably similar
results when analyzing different ILC-like maps based on the WMAP three, five and seven
year data. We perform a set of tests to investigate whether and to what extend the detected
anomalies can be explained by systematics. While none of these tests can convincingly rule
out the intrinsic nature of the anomalies for the low l case, the ILC map making procedure
and/or residual noise in the maps can also lead to NGs at small scales.
Our investigations prove that there are phase correlations in the WMAP data of the CMB.
In the absence of an explanation in terms of Galactic foregrounds or known systematic
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artefacts, the signatures at low l must so far be taken to be cosmological at high significance.
These findings would strongly disagree with predictions of isotropic cosmologies with single
field slow roll inflation.
The task is now to elucidate the origin of the phase correlations and to understand the
physical processes leading to these scale-dependent non-Gaussianities – if it turns out that
systematics as cause for them must be ruled out.

6.1 Introduction

The Cosmic Microwave Background (CMB) radiation represents the oldest observable sig-
nal in the Universe. Since this relic radiation has its origin just 380000 years after the
Big Bang when the CMB photons were last scattered off electrons, this radiation is one of
the most important sources of information to gain more knowledge about the very early
Universe. Estimating the linear correlations of the temperature fluctuations in the CMB
as measured e.g. with the WMAP satellite by means of the power spectrum has yielded
very precise determinations of the parameters of the standard ΛCDM cosmological model
like the age, the geometry and the matter and energy content of the Universe [235, 45].
Analyzing CMB maps by means of the power spectrum represents an enormous compres-
sion of information contained in the data from approx. 106 temperature values to roughly
1000 numbers for the power spectrum. It has often been pointed out ([44] and references
therein) that this data compression is lossless and thus fully justified, if and only if the
statistical distribution of the observed fluctuations is a Gaussian distribution with random
phases. Any information that is contained in the phases and the correlations among them,
is not encoded in the power spectrum, but has to be extracted from measurements of
higher-order correlation (HOC). Thus, the presence of phase correlations may be consid-
ered as an unambiguous evidence of non-Gaussianity (NG). Otherwise, non-Gaussianity
can only be defined by the negation of Gaussianity.
Primordial NG represents one way to test theories of inflation with the ultimate goal to con-
strain the shape of the potential of the inflaton field(s) and their possible (self-)interactions.
While the simplest single field slow roll inflationary scenario predicts that fluctuations are
nearly Gaussian [23, 24, 25], a variety of more complex models predict deviations from
Gaussianity [58, 59, 63, 36]. Models in which the Lagrangian is a general function of
the inflaton and powers of its first derivative [69, 70] can lead to scale-dependent non-
Gaussianities, if the sound speed varies during inflation. Similarly, string theory models
that give rise to large non-Gaussianity have a natural scale dependence [251, 236]. Also,
NGs put strong constraints on alternatives to the inflationary paradigm [250, 252].
Given the plethora of conceivable scenarios for the very early Universe, it is worth first
checking what is in the data in a model-independent way. Further, such a model-independent
approach has a large discovery potential to detect yet unexpected fingerprints of nonlin-
ear physics in the early universe. Thus, a detection of possibly scale-dependent non-
Gaussianity being encrypted in the phase correlations in the WMAP data would be of
great interest. While a detection of non-Gaussianity could be indicative of an experimen-
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tal systematic effect or of residual foregrounds, it could also point to new cosmological
physics.
The investigations of deviations from Gaussianity in the CMB (see [235] and references
therein) and claims for the detection of non-Gaussianitiy and a variety of other anomalies
like hemispherical asymmetries, lack of power at large angular scales, alignment of multi-
poles, detection of the Cold Spot etc. (see e.g. [126, 122, 125, 127, 244, 123, 105, 130, 148,
248, 245, 117, 134, 249]) have been made, where the statistical significance of some of the
detected signatures is still subject to discussion [153, 155]. These studies have in common
that the level of non-Gaussianity is assessed by comparing the results for the measured
data with simulated CMB-maps which were generated on the basis of the standard cos-
mological model and/or specific assumptions about the nature of the non-Gaussianities as
parametrised with e.g. the scalar, scale-independent parameter fnl. Other studies focused
on the detection of signatures in the distribution of Fourier phases [85, 90, 88, 93] repre-
senting deviations from the random phase hypothesis for Gaussian random fields. These
model-independent tests also revealed signatures of NGs. Pursuing this approach one can
go one step further and investigate possible phase correlations and their relation to the
morphology of the CMB maps by means of so-called surrogate maps.
This technique of surrogate data sets [157] was originally developed for nonlinear time
series analysis. In this field of research complex systems like the climate, stock-market,
heart-beat variability, etc. are analyzed (see e.g. [162] and references therein). For those
systems a full modelling is barely or not possible. Therefore, statistical methods of con-
strained randomization involving surrogate data sets were developed to infer some infor-
mation about the nature of the underlying physical process in a completely data-driven,
i.e. model-independent way. One of the first and most basic question here is whether
a (quasiperiodic) process is completely linear or whether also weak nonlinearities can be
detected in the data. The basic formalism to answer this question is to compute statistics
sensitive to HOCs for the original data set and for an ensemble of surrogate data sets,
which mimic the linear properties of the original time series while wiping out all phase
correlations. If the computed measure for the original data is significantly different from
the values obtained for the set of surrogates, one can infer that the data contain HOCs.
Extensions of this formalism to three-dimensional galaxy distributions [163] and two-
dimensional simulated flat CMB maps [164] have been proposed and discussed. By intro-
ducing a more sophisticated two-step surrogatization scheme for full-sky CMB observations
it has become possible to also test for scale-dependent NG in a model-independent way
[239]. Probing NG on the largest scales (l < 20) yielded highly significant signatures for
both NG and ecliptic hemispherical asymmetries.
In this paper, we apply the method of constrained randomization to the WMAP five
year and seven year data in order to test for scale-independent and scale-dependent non-
Gaussianity up to l = 300 as encoded in the Fourier phase correlations. Further, this work
fully recognises the need to rule out foregrounds and systematic artefacts as the origin of
the detections (as advised by [155]). Therefore, a large part of our analyses is dedicated
to various checks on systematics to single out possible causes of the detected anomalies.
The paper is organized as follows: In Section 6.2 we briefly describe the observational and
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simulated data we use in our study. The method of constrained randomization is reviewed
in some detail in Section 6.3. Scaling indices, which we use as test statistic, and the statis-
tics derived out of them are discussed in Section 6.4. In Section 6.5 we present our results
and we draw our conclusions in Section 6.6.

6.2 Data Sets

We used the seven years foreground-cleaned internal linear combination (ILC) map [38]
generated and provided by the WMAP team1 (in the following: ILC7). For comparison we
also included the map produced by [226], namely the five years needlet-based ILC map,
which has been shown to be significantly less contaminated by foreground and noise than
other existing maps obtained from WMAP data (in the following: NILC5).
To check for systematics we also analyzed the following set of maps:
1) Uncorrected ILC map

The ILC map is a weighted linear combination of the 5 frequency channels that recovers
the CMB signal. The weights are derived by requiring minimum variance in a given region
of the sky under the constraint that the sum of the weights is unity. Such weights, how-
ever, cannot null an arbitrary foreground signal with a non-blackbody frequency spectrum,
thus some residuals due to Galactic emission will remain. The WMAP team attempts to
correct for this ”bias” with an estimation of the residual signal based on simulations and
a model of the foreground sky. Our uncorrected map (UILC7 in the following) is simply
the ILC without applying this correction, computed from the weights provided in [38] and
the 1-degree smoothed WMAP data.
2)Asymmetric beam map

Beam asymmetries may result in statistically anisotropic CMB maps. To asses these ef-
fects on the signatures of scale-dependent NGs and their (an-)isotropies we make use of the
publicly available CMB sky simulations including the effects of asymmetric beams [254].
Specifically we analyse a simulated map of the V1-band, because this band is considered
to have the least foreground contamination.
3) Simulated coadded VW-band map

To make sure that neither systematic effects are induced by the method of constrained
randomization nor the WMAP-like beam and noise properties lead to systematic devia-
tions from Gaussianity we include in our analysis a co-added VW-map as obtained using
the standard ΛCDM best fit power spectrum and WMAP-like beam and noise properties.
Note that this map did not undergo the ILC-map making procedure.
4) Simulated ILC map

Simulated sky maps result from processing a simulated differential time-ordered data
(TOD) stream through the same calibration and analysis pipeline that is used for the
flight data. The TOD is generated by sampling a reference sky that includes both CMB
and Galactic foregrounds with the actual flight pointings, and adding various instrumental
artefacts. We have then processed the individual resulting data into 7 separate simulated

1http://lambda.gsfc.nasa.gov
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yearly ILC maps, plus a 7-year merge. It is worth noting that, if the yearly frequency-
averaged maps are combined into ILCs using the [38] 7-year weights per region, then the
resulting ILCs show clear Galactic plane residuals. This reflects the fact that the simulated
data has a different CMB realisation to the observed sky, and may additionally represent
a mismatch between the simulated foreground properties and the true sky in the Galactic
plane. Instead, we analyse the 7-year merged simulated data to compute the ILC weights
for the simulations, then apply to all yearly data sets separately. However, the derived
weights are quite different from the WMAP7 ones, which would imply different noise prop-
erties in the simulated ILC data compared to the real data. Care should be exercised for
any results that are sensitive to the specific noise pattern.
5) Difference ILC map

Finally, we consider the difference map (year 7 - year 6) from yearly ILC-maps computed
using the same weights and regions as the 7-year data set from [38]. No debiasing has been
applied. With this map we estimate what effect possible ILC-residuals may have on the
detection of NGs.

6.3 Generating Surrogate Maps

To test for scale-dependent non-Gaussianities in a model-independent way we apply a two-
step procedure that has been proposed and discussed in [239]. Let us describe the various
steps for generating surrogate maps in more detail:
Consider a CMB map T (θ, φ), where T (θ, φ) is Gaussian distributed and its Fourier
transform. The Fourier coefficients alm can be written as alm = |alm|eiφlm with φlm =
arctan (Im(alm)/Re(alm)). The linear or Gaussian properties of the underlying random
field are contained in the absolute values |alm|, whereas all HOCs – if present – are en-
coded in the phases φlm and the correlations among them. Having this in mind, a versatile
approach for testing for scale dependent non-Gaussianities relies on a scale-dependent
shuffling procedure of the phase correlations followed by a statistical comparison of the
so-generated surrogate maps.
However, the Gaussianity of the temperature distribution and the randomness of the set of
Fourier phases in the sense that they are uniformly distributed in the interval [−π, π], are a
necessary prerequisite for the application of the surrogate-generating algorithm, which we
propose in the following. To fulfil these two conditions, we perform the following prepro-
cessing steps. First, the maps are remapped onto a Gaussian distribution in a rank-ordered
way. This means that the amplitude distribution of the original temperature map in real
space is replaced by a Gaussian distribution in a way that the rank-ordering is preserved,
i.e. the lowest value of the original distribution is replaced with the lowest value of the
Gaussian distribution etc. By applying this remapping we automatically focus on HOCs
induced by the spatial correlations in the data while excluding any effects coming from
deviations of the temperature distribution from a Gaussian one.
To ensure the randomness of the set of Fourier phases we performed a rank-ordered remap-
ping of the phases onto a set of uniformly distributed ones followed by an inverse Fourier
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Figure 6.1: Deviations S(�α(rk)�) of the rotated hemispheres for three scales rk, k = 2, 6, 10
(from left to right) for the ILC7 map and for (from top to bottom) the shuffling intervals
∆l = [2, 1024], ∆l = [2, 20], ∆l = [20, 60], ∆l = [60, 120] and ∆l = [120, 300]. The
expected correspondence between the shuffling range ∆l and the scales rk of the scale-
dependent higher order statistics �α(rk)�, for which the largest deviations are detected,
becomes apparent. While the ecliptic hemispherical asymmetries for ∆l = [2, 20] are most
pronounced for the largest scaling range r10 (second row), the deviation S becomes largest
for r2 when shuffling the phases of the smallest scales ∆l = [120, 300] (last row).
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transformation. These two preprocessing steps only have marginal influence to the maps.
The main effect is that the outliers in the temperature distribution are removed. Due
to the large number of temperature values (and phases) we did not find any significant
dependence of the specific Gaussian (uniform) realization used for remapping of the tem-
peratures (phases). The resulting maps may already be considered as a surrogate map and
we named it zeroth order surrogate map. The first and second order surrogate maps are
obtained as follows:
We first generate a first order surrogate map, in which any phase correlations for the
scales, which are not of interest, are randomized. This is achieved by a random shuffle of
the phases φlm for l /∈ ∆l = [lmin, lmax], 0 < m ≤ l and by performing an inverse Fourier
transformation.
In a second step, N (N = 500 throughout this study) realizations of second order surrogate
maps are generated for the first order surrogate map, in which the remaining phases φlm

with l ∈ ∆l,0 < m ≤ l are shuffled, while the already randomized phases for the scales,
which are not under consideration, are preserved. Note that the Gaussian properties of
the maps, which are given by |alm|, are exactly preserved in all surrogate maps.
So far, we have applied the method of surrogates only to the l-range ∆l = [2, 20]. In
this paper we will repeat the investigations for this l-interval but using newer CMB maps.
Furthermore, we extend the analysis to smaller scales. Namely, we consider three more
l-intervals ∆l = [20, 60], ∆l = [60, 120] and ∆l = [120, 300]. The choice of 60 as lmin and
lmax is somewhat arbitrary, whereas the lmin = 120 and lmax = 300 for the last l-interval
was selected in such a way that the first peak in the power spectrum is covered. Going to
even higher l’s doesn’t make much sense, because the ILC7 map is smoothed to 1 degree
FWHM. Some other maps which we included in our study – especially NILC5 – are not
smoothed and we could in principle go to higher l’s. But to allow for a consistent com-
parison of the results obtained with the different observed and simulated input maps we
restrict ourselves to only investigate l-intervals up to lmax = 300 in this study.
Besides this two-step procedure aiming at a dedicated scale-dependent search of non-
Gaussianity, we also test for non-Gaussianity using surrogate maps without specifying
certain scales. In this case there are no scales, which are not of interest, and the first step
in the surrogate map making procedure becomes dispensable. The zeroth order surrogate
map is to be considered here as first order surrogate and the second order surrogates are
generated by shuffling all phases with 0 < m ≤ l for all available l’s, i.e. in our case
∆l = [2, 1024].
Finally, for calculating scaling indices to test for higher order correlations the surrogate
maps were degraded to Nside = 256 and residual monopole and dipole contributions were
subtracted. The statistical comparison of the two classes of surrogates will reveal, whether
possible HOCs on certain scales have left traces in the first order surrogate maps, which
were then deleted in the second order surrogates. Before the results of such a comparison
of the surrogate maps are shown in detail, we review the formalism of scaling indices.
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6.4 Weighted Scaling Indices and Test Statistics

As test statistics for detecting and assessing possible scale-dependent non-Gaussianities
in the CMB data weighted scaling indices are calculated [163, 164]. The basic ideas of
the scaling index method (SIM) stem from the calculation of the dimensions of attractors
in nonlinear time series analysis [186]. Scaling indices essentially represent one way to
estimate the local scaling properties of a point set in an arbitrary d-dimensional embed-
ding space. The technique offers the possibility of revealing local structural characteristics
of a given point distribution. Thus, point-like, string-like and sheet-like structures can
be discriminated from each other and from a random background. The alignment of e.g.
string-like structures can be detected by using a proper metric for calculating the distances
between the points [179, 253].
Besides the countless applications in time series analysis the use of scaling indices has
been extended to the field of image processing for texture discrimination [177] and fea-
ture extraction [178, 179] tasks. Following further this line we performed several non-
Gaussianity studies of the CMB based on WMAP data using scaling indices in recent
years [164, 130, 239, 248].
Let us review the formalism for calculating this test statistic for assessing HOCs:
In general, the SIM is a mapping that calculates for every point �pi, i = 1, . . . , Npix of a
point set P a single value, which depends on the spatial position of �pi relative to the group
of other nearby points, in which the point under consideration is embedded in. Before we
go into the details of assessing the local scaling properties, let us first of all outline the
steps of generating a point set P out of observational CMB-data. To be able to apply
the SIM on the spherical CMB data, we have to transform the pixelised sky S with its
pixels at positions (θi, φi), i = 1, ..., Npix, on the unit sphere to a point-distribution in an
artificial embedding space. One way to achieve this is by transforming each temperature
value T (θi, φi) to a radial jitter around a sphere of radius R at the position of the pixel
centre (θi, φi). Formally, the three-dimensional position vector of the point �pi reads as

xi = (R + dR) cos(φi) sin(θi) (6.1)

yi = (R + dR) sin(φi) sin(θi) (6.2)

zi = (R + dR) cos(θi) (6.3)

with

dR = a

�
T (θi, φi)− �T �

σT

�
. (6.4)

Hereby, R denotes the radius of the sphere while a describes an adjustment parameter. The
mean temperature and its standard deviation are characterised by �T � and σT , respectively.
By the use of the normalisation we obtain for dR zero mean and a standard deviation of a.
Both R and a should be chosen properly to ensure a high sensitivity of the SIM with respect
to the temperature fluctuations at a certain spatial scale. For the analysis of WMAP-like
CMB data, it turned out that this requirement is provided using R = 2 for the radius of
the sphere and coupling the adjustment parameter a to the value of the below introduced
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scaling range parameter r via a = r [130]. Now that we obtained our point set P , we
can apply the SIM. For every point �pi we calculate the local weighted cumulative point
distribution which is defined as

ρ(�pi, r) =

Npix�

j=1

sr(d(�pi, �pj)) (6.5)

with r describing the scaling range, while sr(•) and d(•) denote a shaping function and a
distance measure, respectively. The scaling index α(�pi, r) is then defined as the logarithmic
derivative of ρ(�pi, r) with respect to r:

α(�pi, r) =
∂ log ρ(�pi, r)

∂ log r
. (6.6)

As mentioned above, sr(•) and d(•) can in general be chosen arbitrarily. For our analysis
we use a quadratic gaussian shaping function sr(x) = e

−(x
r )2 and an isotropic euclidian

norm d(�pi, �pj) = ��pi − �pj� as distance measure. With this specific choice of sr(•) and d(•)
we obtain the following analytic formula for the scaling indices

α(�pi, r) =

�Npix

j=1 2
�

dij

r

�
e
−
�

dij
r

�2

�Npix

j=1 e
−
�

dij
r

�2 , (6.7)

where we used the abbreviation dij := d(�pi, �pj). As becomes obvious from equation (6.7),
the calculation of scaling indices depends on the scale parameter r. Therefore, we can
investigate the structural configuration in the underlying CMB-map in a scale-dependent
manner. For our analysis, we use the ten scaling range parameters rk = 0.025, 0.05, ..., 0.25,
k = 1, 2, ...10, which (roughly) correspond to sensitive l-ranges from ∆l = [83; 387], ∆l =
[41; 193], . . . , ∆l = [8; 39] [248].
In order to quantify the degree of agreement between the surrogates of different orders with
respect to their signatures left in distribution of scaling indices, we calculate the mean

�α(rk)� =
1

Np

Np�

i=1

α(�pi, rk) (6.8)

and the standard deviation

σα(rk) =

�
1

Np − 1

Np�

i=1

(α(�pi, rk)− �α(rk)�)2

�1/2

(6.9)

of the scaling indices αi derived from Np considered pixels for the different scaling ranges
rk. Np becomes the number of all pixels Npix for a full sky analysis. To investigate possible
spatial variations of signatures of NG and to be able to measure asymmetries we also con-
sider the moments as derived from the pixels belonging to rotated hemispheres. In these
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cases the number Np of the pixels halves and their positions defined by the corresponding
φ- and θ-intervals vary according to the part of the sky being considered. Furthermore,
we combine these two test statistics by using χ

2 statistics. There is an ongoing discussion,
whether a diagonal χ

2 statistic or the ordinary χ
2 statistic, which takes into account cor-

relations among the different random variables through the covariance matrix is the better
suited measure. On the one hand it is of course important to take into account correlations
among the test statistics, on the other hand it has been argued [122] that the calculation
of the inverse covariance matrix may become numerically unstable when the correlations
among the variables are strong making the ordinary χ

2 statistic sensitive to fluctuations
rather than to absolute deviations. Being aware of this we calculated both χ

2 statistics,
namely the scale dependent diagonal χ

2 combining the mean and the standard deviation
at a given scale rk, and the scale-independent χ

2 combining the mean or/and the standard
deviation calculated at all scales rk, k = 1, . . . , 10 (see [248]).
Further, we calculate the corresponding ordinary χ

2 statistics, which is obtained by sum-
ming over the full inverse correlations matrix C−1. In general, this is expressed by the
bilinear form

χ
2 = ( �M − � �M�)TC−1( �M − � �M�), (6.10)

where the test statistics to be combined are comprised in the vector �M and C is obtained
by cross correlating the elements of �M . Specifically, for obtaining the scale dependent
χ

2
full,�α(rk)�,σα(rk)

combining the mean and the standard deviation at a given scale rk the

vector �M
T becomes �M

T = (M1, M2) with M1 = �α(rk)�, M2 = σα(rk).
Similarly, the full scale-independent χ

2 statistics χ
2
full,�α�, χ

2
full,σα

and χ
2
full,�α�,σα

are derived

from the vectors �M
T consisting of �M

T = (�α(r1)�, . . . , �α(r10)�), �M
T = (σα(r1), . . . , σα(r10))

and �M
T = (�α(r1)�, . . . , �α(r10)�, σα(r1), . . . , σα(r10)), respectively. For all our investigations

we calculated both χ
2 statistics and found out that the results are only marginally de-

pendent from the chosen χ
2 statistics. Thus, in the following we will only list explicit

numbers for the full χ
2 statistics, if not stated otherwise, because this measure yielded

overall slightly more conservative results.

6.5 Results

To test for NGs and asymmetries in the ILC7 map and the NILC5 map, we compare the
different surrogate maps in the following way:
For each scale we calculate the mean �α(rk)� and standard deviation σα(rk) of the map
of scaling indices α(θ, φ; rk) of the full sky and a set of 768 rotated hemispheres. The
northern pole of the different hemispheres is located at every pixel centre of the full sky
with Nside = 8 in the HEALpix2 [211] pixelisation scheme. The differences of the two

2http://healpix.jpl.nasa.gov/
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Figure 6.2: Probability density P (α) of the first and second order surrogates for the scaling
indices calculated for the largest scaling range r10 and for the l−interval ∆l = [2, 20]. Yellow
(green) curves denote the densities for 20 realizations of second order surrogates derived
from the ILC7 (NILC5) map. The black lines are the corresponding first order surrogates.
The reference frame for defining the upper and lower hemispheres is chosen such that the
difference ∆S = Sup− Slow becomes maximal for �α� of the respective map and respective
scale r.
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Figure 6.3: Same as figure 6.2 but the second smallest scaling range r2 and the l−interval
∆l = [120, 300].
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∆l Full Sky Upper Lower
Hemisphere Hemisphere

�α(r2)�: (S/%) (S/%) (S/%)

[2, 1024] 7.73 / > 99.8 4.53 / >99.8 1.87 / 96.0

[2, 20] 0.14 / 56.6 3.54 / >99.8 3.44 / >99.8
[20, 60] 0.88 / 80.6 1.84 / 96.4 1.08 / 85.2
[60, 120] 0.26 / 60.4 0.32 / 64.8 0.64 / 71.6
[120, 300] 6.97 / >99.8 5.36 / >99.8 0.92 / 83.0
σα(r2):

[2, 1024] 4.16 / >99.8 3.77 / >99.8 0.25 / 61.8

[2, 20] 0.48 / 69.2 0.48 / 69.8 0.19 / 58.0
[20, 60] 1.70 / 95.2 3.18 / >99.8 1.02 / 84.8
[60, 120] 0.88 / 80.0 2.35 / 98.8 1.25 / 88.2
[120, 300] 3.54 / >99.8 1.03 / 83.4 3.69 / >99.8
χ

2
�α(r2)�,σα(r2)

:

[2, 1024] 24.55/>99.8 14.44 / >99.8 0.94 / 84.4

[2, 20] 0.90 / 85.2 7.67 / >99.8 8.47 / 99.8
[20, 60] 0.82 / 83.4 4.03 / 99.2 0.31 / 50.4
[60, 120] 0.51 / 61.4 3.63 / 98.6 1.00 / 85.2
[120, 300] 19.62 / >99.8 17.17 / >99.8 4.15 / 99.2

Table 6.1: Deviations S and empirical probabilities p of the mean, standard deviation and
their χ

2-combination as derived for the scaling indices at the second smallest scale r2. The
results of the ILC7 map are shown for the different l-bands as well as for the full sky and
the upper and lower hemispheres. Corresponding to the small scale r2 the largest values
for S are calculated for small scale non-Gaussianities in the l-range [120, 300] and for the
scale-independent NGs, where the phases of all l’s (∆l = [2, 1024]) are included.

classes of surrogates are quantified by the σ-normalized deviation S

S(Y ) =
Ysurro1 − �Ysurro2�

σYsurro2

(6.11)

with, Y = �α(rk)�, σα(rk), χ
2. Every hemisphere of the set of 768 hemispheres delivers one

deviation value S, which is then plotted on a sky map at that pixel position where the
z-axis of the rotated hemisphere pierces the sky. Fig. 6.1 shows the deviations S for the
mean value S(�α(rk)�), k = 2, 6, 10 for the ILC7 map as derived from the comparison of
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∆l Full Sky Upper Lower
Hemisphere Hemisphere

�α(r10)�: (S/%) (S/%) (S/%)

[2, 1024] 3.75 / >99.8 3.53 / >99.8 1.72 / 95.4

[2, 20] 0.64 / 74.2 3.24 / >99.8 3.41 / >99.8
[20, 60] 0.67/ 74.2 1.41 / 91.6 2.04 / 98.0
[60, 120] 0.01 / 50.5 2.28 / 99.0 2.19 / 98.6
[120, 300] 2.45 / 99.4 3.58 / >99.8 1.38 / 92.2
σα(r10):

[2, 1024] 0.66 / 74.4 3.60 / >99.8 2.90 / >99.8

[2, 20] 0.84 / 80.0 3.09 / >99.8 1.79 / 96.4
[20, 60] 2.27 / 98.6 2.94 / 99.8 0.13 / 55.0
[60, 120] 0.77 / 79.0 1.63 / 94.6 0.47 / 67.6
[120, 300] 0.60 / 73.6 1.61 / 95.8 0.81 / 79.6
χ

2
�α(r10)�,σα(r10)

:

[2, 1024] 1.46 / 90.4 9.83 / >99.8 3.15 / 98.0

[2, 20] 0.21 / 54.8 7.10 / >99.8 6.77 / 99.8
[20, 60] 2.74 / 97.2 5.27 / 99.6 0.29 / 73.6
[60, 120] 0.38 / 50.2 2.09 / 94.2 0.43 / 75.8
[120, 300] 0.26 / 57.2 2.23 / 96.2 0.19 / 60.4

Table 6.2: Same as table 6.1 but for the scaling indices at the largest scale r10. The largest
values for S are found for large scales non-Gaussianities in the l-range [2, 20].

the different classes of surrogates for the scale-independent surrogate test and for the four
selected l-ranges. The following striking features become immediately obvious:
First, various deviations representing features of non-Gaussianity and asymmetries can be
found in the S-maps for the ILC7 map. These features can nearly exactly be reproduced
when the NILC5 map is taken as input map (results not shown).
Second, we find for the scale-independent surrogate test (first row in figs. 6.1) large
isotropic deviations for the scaling indices calculated for the smallest scale shown in the
figure. The negative values for S indicate that the mean of the scaling indices for the first
order surrogate is smaller than for the second order surrogate maps. This systematic trend
can be interpreted such that there’s more structure detected in the first order surrogate
than in the second order surrogate maps. Obviously, the random shuffle of all phases has
destroyed a significant amount of structural information at small scales in the maps.
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∆l Full Sky Upper Lower
Hemisphere Hemisphere

χ
2
�α�: (S/%) (S/%) (S/%)

[2, 1024] 5.73 / >99.8 9.35 / >99.8 0.33 / 55.2

[2, 20] 0.97 / 95.0 4.57 / 99.6 4.01 / 99.2
[20, 60] 1.81 / 94.2 2.57 / 97.4 2.42 / 97.0
[60, 120] 1.41 / 99.0 1.53 / 99.6 0.91 / 83.8
[120, 300] 3.17 / 92.8 10.53 / >99.8 1.19 / 87.8
χ

2
σα

:

[2, 1024] 5.50 / >99.8 11.50 / >99.8 0.66 / 79.6

[2, 20] 0.32 / 52.8 4.03 / 98.6 4.04 / 99.6
[20, 60] 2.15 / 95.8 4.00 / 99.8 2.18 / 96.4
[60, 120] 1.40 /98.2 3.26 / 99.4 2.01 / 95.6
[120, 300] 3.10 / 99.0 8.90 / >99.8 1.90 / 95.8
χ

2
�α�,σα

:

[2, 1024] 1.89 / 94.2 8.38 / >99.8 3.03 / 98.8

[2, 20] 0.73 / 77.4 5.64 / >99.8 6.01 / 99.8
[20, 60] 1.60 / 92.8 3.42 / 99.2 1.49 / 91.0
[60, 120] 0.26 / 52.4 2.15 / 96.6 0.53 / 75.6
[120, 300] 1.68 / 92.8 5.34 / 99.8 0.22 / 63.2

Table 6.3: Same as table 6.1 but for the scale-independent χ
2-statistics. Also for this

statistics the largest values for S are found for the largest ∆l = [2, 20] and smallest scales
∆l = [120, 300] and for the scale-independent NGs.

Third, for the scale-dependent analysis we obtain for the largest scales (∆l = [2, 20]) highly
significant signatures for non-Gaussianities and ecliptic hemispherical asymmetries at the
largest r−values (second row in figs. 6.1). These results are perfectly consistent with those
obtained for the WMAP 5 yr ILC map and the foreground removed maps generated by
[104] on the basis of the WMAP 3 year data (see [239]). The only difference between this
study and our previous one is that we now obtain higher absolute values for S ranging
now from −4.00 < S < 3.72 for the ILC7 map and −4.36 < S < 4.50 for the NILC5 map
as compared to −3.87 < S < 3.51 for the WMAP 5 yr ILC map. Thus, the cleaner the
map becomes due to better signal-to-noise ratio and/or improved map making techniques
the higher the significances of the detected anomalies, which suggests that the signal is of
intrinsic CMB origin.



92 6. Extending the Analysis of the WMAP 7-year data

Fourth, we also find for the smallest considered scales (∆l = [150, 300]) large isotropic de-
viations for the scaling indices calculated for a small scaling range r very similar to those
observed for the scale-independent test.
Fifth, we do not observe very significant anomalies for the two other bands (∆l = [20, 60]
and ∆l = [60, 120]) being considered in this study. Thus, the results obtained for the scale
independent surrogate test can clearly be interpreted as a superposition of the signals iden-
tified in the two l-bands covering the largest (∆l = [2, 20]) and smallest ∆l = [120, 300])
scales. Let us investigate the observed anomalies in more details. We begin with a closer
look at the most significant deviations. Fig. 6.2 shows the probability densities derived
for the full sky and for (rotated) hemispheres for the scaling indices at the largest scaling
range r10 for the first and second order surrogates for the l-interval ∆l = [2, 20]. We rec-
ognize the systematic shift of the whole density distribution towards higher values for the
upper hemisphere and to lower values for the lower hemisphere. As these two effects cancel
each other for the full sky, we do no longer see significant differences in the probability
densities in this case. Since the densities as a whole are shifted, the significant differences
between first and second order surrogates found for the moments cannot be attributed to
some salient localizable features leading to an excess (e.g. second peak) at very low or
high values in otherwise very similar P (α)-densities. Rather, the shift to higher (lower)
values for the upper (lower) hemisphere must be interpreted as a global trend indicating
that the first order surrogate map has less (more) structure than the respective set of
second order surrogates. The seemingly counterintuitive result for the upper hemisphere
is on the other hand consistent with a linear hemispherical structure analysis by means
of a power spectrum analysis, where also a lack of power in the northern hemisphere and
thus a pronounced hemispherical asymmetry was detected [125, 134]. However, it has to
be emphasised that the effects contained in the power spectrum are – by construction –
exactly preserved in both classes of surrogates, so that the scaling indices measure effects
that can solely be induced by HOCs thus being of a new, namely non-Gaussian, nature.
Interestingly though, the linear and nonlinear hemispherical asymmetries seem to be cor-
related with each other.
Fig. 6.3 is very similar to fig. 6.2 and shows the probability densities for the scaling indices
calculated for the second smallest scaling range r2 for the first and second order surrogates
for the l-interval ∆l = [120, 300]. The systematic shift towards smaller values for the first
order surrogate for both hemispheres and thus for the full sky is visible. It is interesting
to note that all densities derived from the ILC7 and NILC5 map differ significantly from
each other. These differences can be attributed to e.g. the smoothing of the ILC7 map.
However, the systematic differences between first and second order surrogates induced by
the phase manipulations prevailed in all cases – irrespective of the input map.
The results for the deviations |S(r)| for the full sky and rotated upper and lower hemi-
sphere are shown for all considered l-ranges and all scales r in figs. 6.4 . The corresponding
values for r2 and r10 are listed in the tables 6.1 and 6.2. In table 6.3 we further summarize
the results for the scale-independent χ

2-measures χ
2
�α�, χ

2
σα

and χ
2
�α�,σα

.
The main results which were already briefly discussed on the basis of figs. 1 become

much more apparent when interpreting fig. 6.4 and tables 6.1 to 6.3. We find stable
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Figure 6.4: Deviations |S(r)| for the ILC7 (left) and NILC5 (right) map as a function of the
scale parameter r for the full sky (black) and the upper (red) and lower (blue) hemisphere.
The plus signs denote the results for the mean �α(rk)�, the star-signs for the standard
deviation σα(rk) and the boxes for the χ

2-combination of �α(rk)� and σα(rk). The shaded
region indicates the 3σ significance interval.

3.7 − 12σ deviations for all r-values for S(�α(rk)�) and the scale-independent surrogate
test when considering the full sky. This yields S-values of S(�α(r2)�) = 7.73 (ILC7 map)
and S(�α(r2)�) = 11.06 (NILC5 map) for the scaling indices calculated for the small value
r2 and S(�α(r10)�) = 3.75 (ILC7 map) and S(�α(r10)�) = 5.77 (NILC5 map) for the largest
radius r10. This stable r-independent effect leads to very high values of the deviations S

for the scale-independent χ
2-statistics S(χ2

�α�), where we find S(χ2
�α�) = 5.73 (ILC7 map)

and S(χ2
�α�) = 27.93 (NILC5 map). It is interesting to compare these results with those

obtained for the diagonal χ
2-statistics. In this case we find S(χ2

�α�) = 57.32 (ILC7 map)

and S(χ2
�α�) = 119.16 (NILC5 map), which is up to an order of magnitude larger than the

values for the full χ
2-statistics. These results are very remarkable, since they represent –

to the best of our knowledge – by far the most significant detection of non-Gaussianities in
the WMAP data to date. Note that we used here only the mean value of the distribution
of scaling indices, which is a robust statistics not being sensitive to contributions of some
spurious outliers. Further, the scale-independent statistics χ

2
�α� calculated for the full sky

represents a rather unbiased statistical approach.
The hemisperical asymmetry for NGs on large scale (∆l = [2, 20]) finds its reflection in the
results of S(r). While we calculate significant and stable deviations S for the upper and
lower hemispheres separately (red and blue lines) in fig. 6.4, the results for the full sky
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(black lines) are not significant, because the deviations detected in the two hemispheres are
complementary and thus cancel each other. Therefore, we obtain only for the hemispheres
high values for S ranging from S = 3.24 up to S = 7.10 (S = 4.11 up to S = 10.82) for
the ILC7 (NILC5) map when considering the statistics derived from the scaling indices for
the largest scales r10 and S = 4.01 up to S = 9.76 for the scale-independent χ

2-statistics.
For the smallest scales considered so far (∆l = [120, 300]) we also find significant deviations
from non-Gaussianity being much more isotropic and naturally more pronounced at smaller
scaling ranges r < 0.15. Thus, we obtain S = 6.97 (ILC7 map) and S = 5.30 (NILC5 map)
for S(�α(r2)�) considering the full sky. For the scale-independent χ

2-statistics the most
significant signatures of NGs are detected for the respective upper hemispheres ranging
from S = 5.16 to S = 10.53. To test whether all these signatures are of intrinsic cosmic
origin or more likely due to foregrounds or systematics induced by e.g. asymmetric beams
or map making, we performed the same surrogate and scaling indices analysis for the five
additional maps described in Section 6.2. Figs. 6.5 and 6.6 show the significance maps for
the two l-ranges ∆l = [2, 20] and ∆l = [120, 300], for which we found the most pronounced
signatures in the ILC7 and NILC5 map. For the large scale NGs we find essentially the
same results for the UILC7 map. The difference map, shows some signs of NGs and
asymmetries, especially for large r-values. A closer look reveals, however, that both the
numerator and denominator in the equation for S are an order of magnitude smaller than
the values obtained for the ILC7 (NILC5) maps. Thus the signal of the difference map
can be considered to be subdominant. And even if it were not subdominant, the signal
coming from the residuals would rather diminish the signal in the ILC map than increase
its significance, because the foreground signal is spatially anticorrelated with the CMB-
signal. Both the asymmetric beam map and the simulated coadded VW-map do not show
any significant signature for NGs and asymmetries. Finally, the simulated ILC map does
show some signs of (galactic) north-south asymmetries which become smaller and therefore
insignificant for increasing r, where we find the largest signal in the CMB maps.
For the small scale NGs (∆l = [120, 300]) we also find that the UILC7-map yields similar
results as the ILC7 and NILC5 map with smaller significance. Once again the asymmetric
beam map and the simulated coadded VW-map do not show significant signature for
NGs and asymmetries. This is not the case for the simulated ILC map. Here, we find
highly significant signatures for NGs and asymmetries, which show some similarities with
significance patterns observed in the ILC7 (NILC5) map. Even much more striking features
are detected in the difference map, where we find deviations as high as |S| ≈ 15 forming
a very peculiar pattern in the significance maps for all r. One of us (G.R.) named this
pattern ’Eye of Sauron’, which we think is a nice and adequate association. It is worth
noticing that we found the same pattern when analyzing other difference maps, e.g. year
7 - year 1 or year 2 - year 1.
To better understand, where these features may come from we had a closer look at the

zeroth, first and second order surrogate maps. It became immediately obvious that for the
difference maps the fluctuations are systematically smaller in the regions in the galactic
plane used for the ILC-map making than in the rest of the sky. This effect persists in the
first order surrogate map and is only destroyed in the second order surrogates. This more
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Figure 6.5: Deviations S(�α(rk)�) for the three scales rk, k = 2, 6, 10 (from left to right)
for ∆l = [2, 20]. The results are shown for (from top to bottom) the UILC7 map, the
difference map 7yr ILC - 6yr ILC map, the asymmetric beam map, the coadded V and
W-band from a standard simulation and the simulated ILC-like map (for more detailed
information about the different maps see text).
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Figure 6.6: Same as Fig. 6.5 but for ∆l = [120, 300]. Note that the scale for the color
coding has significantly changed for the difference map (second row).
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(less) structure in first order surrogate map leads to lower (higher) values for the scaling
indices, which can qualitatively explain the observed patterns in the significance maps.
A much more detailed study of these high l effects and their possible origins is part of our
current work but is beyond the scope of this paper. The results for the difference map
shown here point, however, already towards a very interesting application of the surrogate
technique. It may become a versatile tool to define criteria of the cleanness of maps in
the sense of e.g. absence of artificially induced (scale-dependent) NGs in the map of the
residual signal. Such a criterion may then in turn be implemented in the map making
procedure so that ILC-like maps are not only minimizing the overall quadratic error in the
map, but also e.g. the amount of unphysical NGs of the foregrounds.

6.6 Conclusions

To the best of our knowledge this work represents the first comprehensive study of scale-
dependent non-Gaussianities in full sky CMB data as measured with the WMAP satellite.
By applying the method of surrogate maps, which explicitly relies on the scale-dependent
shuffling of Fourier phases while preserving all other properties of the map, we find highly
significant signatures of non-Gaussianities for very large scales and for the l-interval cov-
ering the first peak in the power spectrum. In fact, our analyses yield by far the most
significant evidence of non-Gaussianities in the CMB data to date. Thus, it is no longer
the question whether there are phase correlations in the WMAP data. It is rather to
be figured out what the origin of these scale-dependent non-Gaussian signatures is. The
checks on systematics we performed so far revealed that no clear candidate can be found
to explain the low-l signal, which we take to be cosmological at high significance. These
findings would strongly disagree with predictions of isotropic cosmologies with single field
slow roll inflation.
The picture is not that clear for the signatures found at smaller scales, i.e. at higher l’s. In
this case we found that NGs can also easily be induced by the ILC map making procedure
so that it is difficult to disentangle possible intrinsic anomalies from effects induced by the
preprocessing of the data. More tests are required to further pin down the origin of the
detected high l anomalies and to probably uncover yet unknown systematics being respon-
sible for the low l anomalies. Another way of ruling out effects of unknown systematics is
to perform an independent observation preferably via a different instrument as we are now
able to do with the Planck satellite.
In any case our study has shown that the method of surrogates in conjunction with sen-
sitive higher order statistics offers the potential to become an important tool not only for
the detection of scale-dependent non-Gaussianity but also for the assessment of possibly
induced artefacts leading to NGs in the residual map which in turn may have important
consequences for the map making procedures.
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Chapter 7

Applying the Surrogate approach to
incomplete skies

Original publication: G. Rossmanith, C. Räth, A. J. Banday, H. Modest, K. M. Górski,
G. E. Morfill, Probing non-Gaussianities in the CMB on an incomplete sky using surrogates,
PRL, submitted (2011). Figure 7.3 was added to this version.

Abstract: We demonstrate the feasibility to generate surrogates by Fourier-based
methods for an incomplete data set. This is performed for the case of a CMB analysis,
where astrophysical foreground emission, mainly present in the Galactic plane, are a major
challenge. The shuffling of the Fourier phases for generating surrogates is now enabled by
transforming the spherical harmonics into a new set of basis functions that are orthonormal
on the cut sky. The results show that non-Gaussianities and hemispherical asymmetries
in the CMB as identified in several former investigations, can still be detected even when
the complete Galactic plane (|b| < 30◦) is removed. We conclude that the Galactic plane
cannot be the dominant source for these anomalies. The results point towards a violation
of statistical isotropy.

Introduction.—The search for primordial non-Gaussianities in the Cosmic Microwave
Background (CMB) is one of the most important yet challenging tasks in modern cosmol-
ogy. Any convincing detection of intrinsic non-Gaussianities as well as their characteristics
and scaling behaviour would directly support or reject different models of inflation, and
therefore affect a fundamental part of the standard cosmological model.

The currently still favoured inflationary model is single-field slow-roll inflation [23, 24,
25], which should result in (nearly) Gaussian and isotropic temperature fluctuations of the
CMB. However, preferred directions and other kinds of asymmetries have been repeatedly
detected [122, 123, 255, 256, 136, 134, 248, 239, 257, 151, 258, 137, 138, 117], already
questioning the simplest picture of inflation. It is under discussion, if these asymmetries
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are connected to foreground influences [245, 238], which appear particularly in the direction
of the Galactic plane.

For investigations of CMB data sets, e.g. WMAP data, the analysis of Fourier phases
has proven to be a useful method [85, 90, 88, 93], since all potential higher order cor-
relations, which directly point to non-Gaussianities, are contained in the phases and the
correlations among them. The method of surrogate maps with shuffled Fourier phases
[239, 257] represents one way of analysing the phases. Originally, this idea stems from the
field of time series analysis [157, 160, 162, 259] and describes the construction of data sets,
so-called surrogates, which are similar to the original, except for a few modified charac-
teristics. The validation of these characteristics in the original data can then be tested by
comparing them to the set of surrogates with appropriate measures. The method used in
[239, 257] tests the hypothesis that the coefficients alm = |a�m| eiφlm of the Fourier trans-
form of the temperature values T (θ, φ) have independent and uniform distributed phases
φ�m ∈ [−π, π] calculated for the complete sphere S. The phases of the original map are
shuffled, which can be done within some previously chosen interval of interest, ∆� = [�1, �2],
or simply for the complete range ∆� = [2, �max] for some given �max. Every realisation of
this shuffling results in a new set of a�ms, which then represents (after transforming back)
one surrogate map. Note that every surrogate still has by construction exactly the same
power spectrum as the original map. If the original map contained any phase correla-
tions, these are now destroyed due to the shuffling. Thus, any detected differences between
the original and a set of surrogate maps reveals higher order correlations and therefore
deviations from Gaussianity.

One major problem in CMB analyses is the treatment of the Galactic plane, which
strongly influences the microwave signal. It is possible to cut out the foreground affected
regions [38], but this procedure itself can affect the subsequent analyses as well. When
applying a sky cut, orthonormality of the spherical harmonics no longer holds on this new
incomplete sky, which leads to a coupling of the a�m‘s, making a naive phase shuffling
impossible. However, one can transform the spherical harmonics into a new set of harmon-
ics, which forms an orthonormal basis on the incomplete sky [170, 171, 172], where phase
manipulation can then take place again.

The problem of incomplete data also occurs in time series analysis by means of surro-
gates. Here, gaps can be overcome e.g. by the use of simulated annealing [260, 158]. Still,
the quality of surrogates constructed with this method seems to be questionable, since it
is not ensured that no phase correlations are induced.

In this Letter, we combine the cut sky methods with phase shuffling, thus enabling
investigations by means of surrogates on an incomplete sky. Our method can also be
extended for the usage on incomplete data sets in general.

Methods.—On a complete sphere S, an orthonormal basis is given by the spherical
harmonics Y�m(s) with � ≥ 0,−� ≤ m ≤ � and s ∈ S. Let the number of harmonics be
limited by some given �max ∈ N+. Now, for any map

f(s) =
��max

�,m

a�mY�m(s), ∀ s ∈ S
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with a�m ∈ C, and for any new incomplete sky S
cut, we want to know the corresponding

a
cut

�m
and Y

cut

�m
for representing the map on the remaining regions of the sphere:

f(s) =
��max

�,m

a
cut

�m
Y

cut

�m
(s), ∀ s ∈ S

cut
,

with Y
cut

�m
being orthonormal on S

cut and thus a
cut

�m
being unique. For real valued spherical

harmonics, this was performed in [170] and [171], and later on extended in [172]. The
methods presented there can be easily adopted to the complex valued spherical harmonics
as well.

At first, we define the vectors

Y (s) := [Y0,0(s), Y1,0(s), Y1,1(s), ..., Y�max,�max(s)]
T
,

a := [a0,0, a1,0, a1,1, ..., a�max,�max ]
T

containing all harmonics and coefficients with m ≥ 0, respectively, of the given map on
the complete sphere. Both have a lenght of imax := (�max + 1)(�max + 2)/2. Analogously,
we define Y

cut(s) and a
cut. Our objective is to determine two transformation matrices

B1, B2 ∈ Cimax×imax , that fulfil the following equations:

Y
cut(s) = B1 Y (s) (7.1)

a
cut = B2 a (7.2)

To identify them, we need to define the coupling matrix

C :=

�

R

Y (s)Y ∗(s)dΩ

as well as analogously its counterpart C
cut, with R being a given region on the sphere.

Hereby, Y
∗ denotes the hermitian transposed of Y . When working with a pixelised sky,

one uses a sum over the pixels of R instead of the integral. For R = S
cut, an orthonormal

set of harmonics Y
cut

�m
needs to fulfill the condition C

cut = Iimax , with Iimax being the
unit matrix of size imax. We can use equation (7.1) on C

cut to change this condition to
B1CB

∗
1 = Iimax . It is possible to apply different matrix decompositions to obtain C = AA

∗

with A ∈ Cimax×imax . Consequently, the above equation now reads as (B1A)(B1A)∗ = Iimax

and offers the simple solution B1 = A
−1.

For the evaluation of B2, let us recall that the coefficient vector a can be expressed by

a =

�

S

Y (s)f(s)dΩ

or, respectively,

a
cut =

�

Scut

Y
cut

(s)f(s)dΩ .

Inserting (7.1) and the expression f(s) = a
T
Y (s) into the latter leads to a

cut = B1C
T
a.

Now we use the above matrix decomposition again and obtain a
cut = B1(AA

∗)T
a = A

T
a.

Thus, it follows that B2 = A
T .
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To obtain the a
cut

�m
and Y

cut

�m
with m < 0, we make use of the following equations, that

hold for full sky and that we assume to be valid also on incomplete skies:

Y
cut

�,−m
= (−1)|m|Y

cut

�m

and
a

cut

�,−m
= (−1)|m|acut

�m
.

For the sky cuts and �-ranges used throughout this Letter, the cut sky harmonics were
tested and confirmed to be orthogonal.

For constructing C = AA
∗ as above, one can make use of different matrix decomposition

methods. Since the coupling matrix C is hermitian and can be treated as positive definite
for low � by construction, a Cholesky decomposition is applicable. This is the easiest and
fastest way, although numerical problems only allow usage for lower �max [172]. Another
possibility is the eigendecomposition (ED): We obtain C = V WV

∗, with the columns of
V containing the eigenvectors, and W being diagonal and containing the eigenvalues of
C. Because of the properties of the coupling matrix, these values are real and positive,
allowing therefore a simple decomposition of W by taking the square root of every element,
W = W

1/2(W ∗)1/2. Thus, we obtain A = V W
1/2. Since C is hermitian, the ED is formally

similar to a singular value decomposition (SVD), which is also applied in this Letter, with
the eigenvalues corresponding to the singular values. For both the ED and the SVD we
apply a householder transformation similar to [172] to make A lower triangular. For the
Cholesky decomposition, this is already the case by definition. Thus, due to equation
(7.2), it is ensured that the mono- and dipole contributions of the underlying maps – often
considered as non-cosmological – are kept separate from the � ≥ 2 modes.

With the help of the new cut sky harmonics Y
cut

�m
, we can now generate the surrogates on

a cut sky S
cut as well. Similar to above, we shuffle the phases φ

cut

�m
of the cut sky coefficients

a
cut

�m
, which is in this work performed for the full cut sky range ∆�

cut = [2, �max]. We obtain
new sets of a

cut

�m
s, which are transformed back to pixel space to form the cut sky surrogate

(CSS) maps. As we did in the case of a complete sphere, we now search for deviations
between the original data as well as its surrogates. However, one has to take care about the
above mentioned properties. While the uniform distribution still holds for φ

cut

�m
, the single

phases in the sets are no longer independent from each other due to equation (7.2). In
other words, the cut sky transformation induces phase correlations to the underlying map.
To account for these systematic effects, we create for each of the input maps 20 full sky
surrogate (FSS) maps as explained above, with �max = 1024 and by shuffling the phases
within ∆� = [2, 1024]. By comparing the results of the surrogate analysis for an input map
and its FSS, we evade systematically induced phase correlations and search for additional
signatures possibly contained in the phases.

In general, the comparison of the original data and its surrogate maps can be accom-
plished with any higher order statistics. In this Letter, we chose the scaling index method

(SIM) [248, 257] as well as Minkowski functionals [122, 261] as test statistics.
The SIM is a local measure that is able to detect structural characteristics of a given

data set by estimating its local scaling properties. Briefly, the temperature anisotropies
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T (θ, φ) are transformed to variations in radial direction around the sphere, therefore leading
to a point distribution �pi, i = 1, . . . , Npix, in three-dimensional space. Then, the weighted
cumulative point distribution ρ(�pi, r) is calculated for every point �pi and a freely chosen
scaling parameter r. Since we will only investigate the large scales in this Letter, we
choose the free parameter r to be r10 = 0.25, which is appropriate for these scales [248].
Eventually, the scaling indices are obtained by calculating the logarithmic derivative of
ρ(�pi, r) with respect to r.

The three Minkowski functionals measure the behaviour of a given map with respect
to different threshold values ν. The fraction of the sky where the temperature value is
larger than ν is denoted as the excursion set R(ν), its smooth boundary is identified by
∂R(ν), and da and dl describe the surface element of R(ν) and the line element of ∂R(ν),
respectively. Then, we can define the three Minkowski functionals as

Marea(ν) =

�

R(ν)

da

Mperim(ν) =

�

∂R(ν)

dl

Meuler(ν) =

�

∂R(ν)

dlκ ,

with κ being the geodesic curvature of ∂R(ν). For more details, we refer to [122, 261].
Eventually, we sum up over all thresholds with the help of the appropriate cut sky surro-
gates by means of a χ

2-measure,

χ
2
• =

�

ν

��
M

map

• (ν)− �MCSS

• (ν)�
�
/σM

CSS
• (ν)

�2

for Marea(ν), Mperim(ν) and Meuler(ν), respectively.
The results for the different maps of both the scaling indices and the Minkowski func-

tionals are then evaluated in terms of rotated hemispheres : For 768 different angles we
rotate the underlying maps and calculate the σ-normalised deviations

S1(Y ) =
�
Y

map − �Y CSS�
�
/σY CSS

of the pixels included in the new upper hemisphere between the input map and its cut sky
surrogates, by means of the measure Y . In our case, Y = �α�, σα, χ

2
area

, χ
2
perim

, χ
2
euler

, with
�α� and σα being the mean and the standard deviation of the scaling index response α(s),
respectively. The result is then shown as colour-coded pixel, whose centre is pierced by the
z-axis of the respective rotated reference frame (see [239, 248, 257]). To separate traces
of possibly intrinsic phase correlations from those induced by the transition to incomplete
sky, we calculate the statistics

S2(Y ) =
�
S

data

1 (Y )− �SFSS

1 (Y )�
�
/σS

FSS
1 (Y )

for comparing the results of S1(Y ) for the original and the full sky surrogate maps.
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Figure 7.1: The σ-normalised deviations S2(σα) comparing a simulated map and its 20 full-
sky surrogates for the complete sphere (upper left) and the three different central latitude
sky cuts |b| < 10◦ (upper right), |b| < 20◦ (lower left), and |b| < 30◦ (lower right), that
were constructed by means of the singular value decomposition.

To investigate possible deviations from statistical isotropy, we introduce an asymmetry
statistics ∆S2(Y ). For the scaling indices, we define the difference in Y between each pair
of opposite hemispheres as

∆S2(Y ) =
��Sup

2 (Y )− S
low

2 (Y )
��

for Y = �α�, σα. This statistics is appropriate for the SIM, since the sign of the deviations
is preserved in S2(Y ). This is not the case for the quadratic measure χ

2 used on the
Minkowski functionals. Therefore, we have to include the difference between opposite
hemispheres already in the χ

2-measure by computing

∆χ
2
• =

�

ν

��
∆M

map

• (ν)− �∆M
CSS

• (ν)�
�
/σ∆M

CSS
• (ν)

�2
,

with
∆M•(ν) = M

up

• (ν)−M
low

• (ν) .

We can then define the asymmetry statistics for the Minkowski functionals as

∆S2(Y ) = S2(∆Y )

for Y = χ
2
area

, χ
2
perim

, χ
2
euler

.
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Figure 7.2: Same as figure 7.1 but for the NILC5 map.

We construct the cut sky harmonics for three different central latitude sky cuts, that
remove |b| < 10◦, 20◦ and 30◦ of latitude in the centre of the maps. While the smallest cut
(|b| < 10◦) removes already a large amount of the highly foreground affected regions but
retains nearly all non-affected regions, the largest (|b| < 30◦) excludes almost the entire
Galactic plane, with only minor point sources remaining. We choose an upper bound of
�max = 20 and set a�m = 0 for � > �max. To check for consistency with [239, 257], we
applied the cut sky formalism also to the complete sphere with no points excluded. To
compare the different matrix decomposition methods, all three approaches (Cholesky, ED,
SVD) were applied. For every sky cut, the phases of the coefficients a

cut

�m
were shuffled to

generate N = 100 cut sky surrogates for each input map. The same was done for the
corresponding FSS maps. For computational reasons, the resolution of the input maps in
the corresponding HEALPix scheme [211, 212] was chosen to be Nside = 256 for the scaling
index analysis and Nside = 64 for the Minkowski functionals. By testing several subsets,
we assured ourselves that the results are only marginally affected when choosing a lower
resolution.

Validation.—To test the new approach, we generate a Gaussian simulation of the coad-
ded VW-band of the WMAP satellite via a noise-weighted sum. The procedure is the same
as in [248], but note that we now apply the more recent WMAP 7-year parameters. In
addition, we applied the cut sky surrogate approach to another simulated Gaussian map,
to which we added typical foreground residuals that are still present after the template
cleaning of the WMAP data. Those residuals were computed by subtracting the WMAP
ILC map from the full seven-year foreground reduced coadded VW-band. This is done to
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Figure 7.3: Same as figure 7.2 but for S2(χ2
area

).

examine the impact of possible aliasing effects due to the chosen �max, that could be caused
by strong foregrounds which are cut out.

For the clean simulated Gaussian map, the significances S2(σα) calculated for the ro-
tated hemispheres are illustrated in figure 7.1. The differences between the original and
the FSS maps are insignificant (S2(Y ) < 3) for the complete sphere and all sky cuts. The
same holds for the assembled map, except for the full sky, where phase correlations are
obviously present. These results clearly demonstrate the practicality of the approach. The
results of the assembled map show that the impact of aliasing effects, even when strong
foregrounds are present in the Galactic plane, is negligible.

Only minimal differences were detected for the three used matrix decomposition meth-
ods, that are likely to be due to the random shuffle of the phases. When going to larger
�-ranges or more irregular sky cuts, this technical part of the investigation will become
more important, especially for making the transition to the cut sky possible.

Application to WMAP data.—For the application of the cut sky method to observational
data, we make use of two different maps, which are both linear combinations of the different
frequency bands and based on the WMAP results [29, 210]: First, the 7-year Internal Linear
Combination (ILC7) map provided by the WMAP team [38] and second the 5-year needlet
based ILC map (NILC5) [226]. For both maps, the monopole and dipole were removed.

The significances S2(σα) determined for the rotated hemispheres of the NILC5 map for
the different sky cuts are shown in figure 7.2 while the findings for ∆S2(Y ) are illustrated
in figure 7.4. When looking at the deviations S2(�α�) and S2(σα) for the |b| < 10◦ cut of
both the ILC7 and NILC5 maps, we detect significant non-Gaussianities and an asymme-
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Figure 7.4: The difference between the results of opposite hemispheres ∆S2(Y ), for the
ILC7 (solid) and the NILC5 (dashed) maps. The reference frame for defining the upper
and lower hemispheres is chosen such that ∆S2(Y ) becomes maximal. The blue lines with
the boxes and the star-signs denote the results of �α� and σα, respectively, while the red
lines mark the results of χ

2
area

.

try. Both features were already found in corresponding full-sky analyses [239, 257]. The
signal for S2(�α�) becomes more unarticulate for larger cuts. Still, the maximum differ-
ence ∆S2(�α�) between opposite hemispheres remains significant. For S2(σα), a significant
asymmetry with a clear north-south direction persists for both the ILC7 and the NILC5
maps when excluding the Galactic plane, which is also reflected by a constant ∆S2(σα).

The Minkowski functionals show similar results: For Marea(ν), one detects similar de-
viations between the data sets and its full sky surrogates. This is illustrated for the
NILC5 map in figure 7.3. Again, these findings are reflected in the asymmetry statistics
∆S2(χ2

area
), as shown in figure 7.4. For Mperim(ν) and Meuler(ν), the results agree for the

full sky, but get less definite for larger cuts, which is likely to be due to the limited amount
of pixels.

The results of the data clearly indicate that both the detected non-Gaussianity and
asymmetry cannot mainly be attributed to foreground influences. In combination with the
multitude of checks on systematics performed for the surrogates technique in [239, 257],
one has to conclude that the signatures are of cosmological origin. This represents a
strong violation of the Gaussian hypothesis and of statistical isotropy. Both assumptions
are fundamental parts of single-field slow-roll inflation, which is therefore rejected at high
significance by this analysis. In addition, due to the fact that all cuts remove a notable
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amount of pixels from the sphere (for the largest cut |b| < 30◦ it is already half of the
sky), the decreasing significance for the incomplete skies can at least in parts be explained
by less input points, which leads to an increasing influence of noise and a lower effect of
the intrinsic signal. This especially holds for the two Minkowski functionals Mperim(ν) and
Meuler(ν), which examine complex pixel formations and thus need enough data points to
produce statistically reliable results.

Conclusion.—We demonstrated the feasibility of generating surrogates by Fourier-based
methods also for an incomplete data set. This was worked out for the case of a CMB
analysis on an incomplete sphere. Three different constant latitude sky cuts were applied.
For this purpose, three different cut sky transformations were calculated. We generated
100 cut sky surrogates for every input map, sky cut and matrix decomposition method,
which were analysed by means of scaling indices and Minkowski functionals. To remove
systematic effects, a second analysis compared the results of the original with the ones of 20
full sky surrogate maps for each of the input maps. For simulated maps, no anomalies could
be detected. The findings for the ILC7 and the NILC5 maps show strong signatures of
non-Gaussianities and pronounced asymmetries, which persist even when removing larger
parts of the sky. This confirms that the influence of the Galactic plane is not responsible for
these deviations from Gaussianity and isotropy. Together with former full-sky analyses, the
results point towards a violation of statistical isotropy. Similar tests with the forthcoming
PLANCK-data will yield more information about the origin of the detected anomalies.

Many of the results in this paper have been obtained using HEALPix [211]. We ac-
knowledge the use of LAMBDA. Support for LAMBDA is provided by the NASA Office
of Space Science.
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Conclusions

In this work, the five- and seven-year observations of the CMB by the WMAP satellite were
analysed in detail by means of the scaling index method. The basic ideas for this method
stem from the calculation of dimensions of strange attractors in nonlinear time series
analysis. Scaling indices are able to identify and characterise the structural components of
a given data set. One the one hand, the tests for deviations from the standard model were
performed by comparing the data sets to simulations of Gaussian random fields mimicking
the properties of the ΛCDM model, which represents the standard approach in CMB
investigations. On the other hand, a novel approach, namely the method of surrogates,
was developed in this work, which offers the possibility to analyse the CMB in a completely
data-driven way. Here, the basic idea is the construction of surrogate data sets, which are
generated by dedicated shuffling of the Fourier phases of the original data map.

Foregrounds, in particular present in the Galactic plane, lead to strong distortions
of the CMB measurements. The best way to handle these distortions is to mask the
respective regions, which causes in turn problems concerning the analysing procedure.
First, it affects the evaluation of the scaling indices close to the mask. For this reason,
a mask-filling method was developed in this work that prevents these boundary effects.
Second, the orthonormality of the Fourier basis set is violated, which is required for the
applicability of the surrogates approach. In this work, the method of surrogates was –
for the first time – successfully combined with a basis transformation that creates a set of
orthonormal Fourier functions on cut skies, thus enabling the surrogates approach on an
incomplete sphere. This method was carefully tested to assess and then rule out the effects
of systematics.

The different analyses of the WMAP data performed with the scaling index method
lead to the following results:

• For the WMAP five-year data, an analysis by means of simulated CMB maps showed
strong evidence for non-Gaussianity, detected an obvious asymmetry, and revealed
several local features in the data, whereupon all results were in agreement with former
investigations. All examined bands lead to consistent findings.

• An investigation of different available five- and seven-year full-sky maps by means



110 8. Conclusions

of surrogates – representing the first application of this method – lead to the by far
most significant detection of non-Gaussianity to date. Detailed checks on systematic
found no non-cosmological origin for these anomalies.

• The combination of surrogate approach and cut sky transformation was applied to
data sets for the first time. The analysis identified once more highly significant
non-Gaussianities and asymmetries, now even for incomplete sky coverage where the
entire Galactic plane was removed. This confirms that the strong foreground effects
present in the Galactic plane are not responsible for the deviations from Gaussianity
and isotropy. In addition to scaling indices, this investigation was also performed with
Minkowski functionals. Different techniques for the basis transformation were applied
as well. Both statistics showed consistent results for all different basis transformation
techniques.

Summarising all these results, the standard picture of single-field slow-roll inflation
is strongly questioned. In addition, the findings point towards a violation of statistical
isotropy in general. The techniques that were developed in this work are ready to be used
on upcoming data sets. Independent and even more precise measurements, in particular
with the current PLANCK satellite, will possibly reveal the true nature of the beginnings
of our Universe.



Appendix A

Simplifications of the cut sky
approach

In this appendix, two technical approaches are introduced, that can significantly simplify
the transformation of the spherical to the cut sky harmonics from Chapter 2.1.3. The
first method describes an optional way to calculate the coupling matrix C if a constant
latitude cut is applied to the sphere. This method is numerically preferable to the usual
direct computation, since for these type of cuts many components of C become trivial.
The second method described here is the Householder transformation. With its help, we
can modify the matrix A to be lower triangular. The advantage of such a matrix is that
the potentially non-cosmological mono- and dipole are kept separate from the other modes
during the transformation to the cut sky regime, and can therefore easily be removed. For
the Cholesky decomposition, a Householder transformation is obsolete since in this case A

is already lower triangular by definition.
Both the simplification of the constant latitude cuts as well as the Householder trans-

formation described in this appendix are complex-valued extensions of the real-valued
methods used in [172], and were applied throughout this work.

A.1 Constant latitude cuts

For the construction of the coupling matrix

C =

�

R

Y (�x)Y ∗(�x)dΩ (A.1)

in Chapter 2.1.3, one needs to define the remaining surface R of the sphere S. If this area
is exclusively defined by one latitude interval of the form θ1 ≤ θ ≤ θ2 or a combination of
several of those intervals, but independent of the longitude ϕ, with 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π,
the applied sky cut is denoted constant latitude cut. In this case, only the components
Ci(�,m),i(��,m�) with m = m

� are non-zero. This simplifies the computation of C significantly.
In addition, C is real-valued for the constant latitude cuts.
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A proof for both of these statements is given in the following, where the remaining
surface is defined as R = {(θ, ϕ)| θ1 ≤ θ ≤ θ2} for simplicity reasons.

Equation (A.1) in the component-wise form reads as

Ci(�,m),i(��,m�) =

�

R

Yi(�,m),i(��,m�)(�x)Y i(�,m),i(��,m�)(�x)dΩ

and can be rewritten by means of latitude and longitude as

Ci(�,m),i(��,m�) =

� 2π

0

�
θ2

θ1

Yi(�,m),i(��,m�)(θ, ϕ)Y i(�,m),i(��,m�)(θ, ϕ) sin θdθdϕ .

By inserting the definition of the spherical harmonics (see section 1.2.3), one can separate
these two integrals, which leads to

Ci(�,m),i(��,m�) = k

� 2π

0

e
imϕ

e
−im

�
ϕ
dϕ

�
θ2

θ1

P�m(cos θ)P��m�(cos θ) sin θdθ ,

whereupon we made use of the definition

k :=
1

2π

�
2� + 1

2

(�−m)!

(� + m)!

�
2�� + 1

2

(�� −m�)!

(�� + m�)!
.

Both the factor k as well as the second integral are real-valued. Therefore, it is sufficient
to show that the first integral is zero for m �= m

�, and real-valued otherwise. This can be
done by applying Euler’s formula:

� 2π

0

e
imϕ

e
−im

�
ϕ
dϕ =

� 2π

0

e
i(m−m

�)ϕ
dϕ =

=

� 2π

0

cos((m−m
�)ϕ)ϕdϕ + i

� 2π

0

sin((m−m
�)ϕ)ϕdϕ

For m �= m
�, the term (m−m

�) is some non-zero integer. Thus, one integrates over one or
more complete oscillations of the sinus or cosinus function, respectively, which leads to the
annihilation of the positive and negative parts. For m = m

�, the first integral is 2π, and
the second zero. In summary, one can write

Ci(�,m),i(��,m�) = 2πk δm,m�

�
θ2

θ1

P�m(cos θ)P��m�(cos θ) sin θdθ .

and therefore the above statements are proven.
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A.2 The Householder Transformation

For the Cholesky decomposition, the matrix A ∈ Cimax×imax from Chapter 2.1.3 is lower
triangular. This is advantageous for two reasons: One the one hand, it slightly simplifies
the computation of the cut sky harmonics Y

cut

�m
and its coefficients a

cut

�m
. On the other

hand, due to equation (2.6), the mono- and dipole have no influence on the other modes
when the transformation to the cut sky regime is applied. Therefore, these potentially
non-cosmological modes can easily be removed in the cut sky, too.

For the eigenvalue and singular value decompositions, A is not triangular in general. But
it is possible to transform A into a lower triangular matrix A

� by means of the Householder
transformation (e.g. [173]). Since the transformation itself creates an upper triangular
matrix, we need to focus on the transposed counterpart A

T in the following. Formally, the
transformation of A

T into an upper triangular matrix (AT )� due to multiplication with an
unitary matrix P reads as

(AT )� = PA
T

. (A.2)

Both the matrices (AT )� and Pi have the same size as A
T . This procedure is iterative: In

step i, the multiplication (AT )i+1 = Pi(AT )i shall set the last (imax− i) components of the
i-th column of the matrix (AT )i to zero:




a
�
1,1

0
. . .

... a
�
i−1,i−1

0 a
�
i,i

0 0 a
�
i+1,i+1 · · ·

...
...

...
0 · · · 0 0 a

�
imax,i+1 · · ·





= Pi





a1,1

0
. . .

... ai−1,i−1

0 ai,i

0 ai+1,i ai+1,i+1 · · ·
...

...
...

0 · · · 0 aimax,i aimax,i+1 · · ·





Here, ai,i denotes the components of (AT )i and a
�
i,i

the ones of (AT )i+1. The transformation
can be accomplished by means of the matrix

Pi =

�
Ii−1 0
0 pi

�
,

whereby Ii−1 denotes the unit matrix of size (i−1), and the matrix pi ∈ C(imax−i+1)×(imax−i+1)

is defined as

pi := Iimax−i+1 − 2
mim

T

i

m
T

i
mi

,

with

(mi)j :=

�
ai,i +

��
imax

k=i
ak,iak,i for j = 1,

aj,i for j > 1.

In summary, we obtain
P = P1P2...Pimax−1 .
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Due to the fact that P is unitary, equation (A.2) can be written as

A = A
�
U

with U = P
−1

and A
� = (AT )�T . The matrix U is unitary as well, and does therefore not

affect the decomposition equation C = AA
∗ from Chapter 2.1.3. Thus, one is able to make

use of a triangular transformation matrix even in the case of an eigenvalue or singular value
decomposition.
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[134] F. K. Hansen, A. J. Banday, K. M. Górski, H. K. Eriksen, P. B. Lilije, ApJ, 704,
1448 (2009).

[135] P. Vielva, J.L. Sanz, MNRAS, arXiv:0910.3196v2



122 BIBLIOGRAPHY

[136] J. Hoftuft, H. K. Eriksen, A. J. Banday, K. M. Górski, F. K. Hansen, P. B. Lilje,
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[151] P. Vielva, E. Mart́ınes-González, M. Cruz, R.B. Barreiro, M. Tucci, MNRAS,
arXiv:1002.4029v2

[152] P. Vielva, Adv. in Astr., vol. 2010, 592094 (2010).

[153] R. Zhang, D. Huterer, Astropart. Phys., 33, 69 (2010).

[154] E. F. Bunn, Proceedings of Rencontres de Moriond (2010).



BIBLIOGRAPHY 123

[155] C. L. Bennett, R. S. Hill, G. Hinshaw, D. Larson, K. M. Smith, J. Dunkley, B. Gold,
M. Halpern, N. Jarosik, A. Kogut, E. Komatsu, M. Limon, S. S. Meyer, M. R. Nolta,
N. Odegard, L. Page, D. N. Spergel, G. S. Tucker, J. L. Weiland, E. Wollack, E. L.
Wright, , ApJS, 192, 17 (2011).

[156] D. Munshi, P. Coles, A. Cooray, A. Heavens, J. Smidt, MNRAS, 410, 1295 (2011).

[157] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, J. D. Farmer, Physica D, 58, 77
(1992).

[158] T. Schreiber, A. Schmitz, Physica D, 142, 346 (2000).

[159] T. Schreiber, A. Schmitz, Phys. Rev. Lett., 77, 635 (1996).

[160] T. Schreiber, A. Schmitz, Phys. Rev. Lett., 80, 2105 (1998).

[161] M. P. Pompilio, F. R. Bouchet, G. Murante, A. Provenzale, ApJ, 449, 1 (1995).

[162] A. Bunde, J. Kropp, H.-J. Schellnhuber, The Science of Disasters: Climate Disrup-

tions, Heart Attacks, and Market Crashes (Springer, Berlin, 2002).
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